扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
3接收机噪声测试结构及具体方法
接收机所接收到的信号的载波频率为63.6 MHz的窄带信号,故只需测量中心频率63.6 MHz,带宽范围较小的噪声特性。噪声测试需要测量出每一级的噪声系数,而接收机的每一级的噪声系数及增益各有不同,为了测量的准确性,必须用使用不同的测量方法。
由于低噪放的噪声系数较小,可以直接用噪声系数仪测量。实验中用Agilent公司生产的N8973A噪声仪进行测量,由于接收机所使用的低噪放直流供电在输出端,而噪声系数仪的输入端不能直接接直流电,故测量时要在放大器的输出接隔直电容再连入噪声仪。
对于接收机中噪声系数较大的网络,需要用上文提到的优化Y因子的测量方法,由于接收机本身的构造以及此种方法中需要放大器工作在放大/不放大2种状态,测量中需要设计控制电路来达到测量要求。如图3,虚线方框内为实验设计的通道切换和前置放大器控制电路、方框外为接收机模型、放大器输入端用50 Ω替代接收线圈提供噪声输入,同时为了简化框图,只画出接收机的放大器后2级。在MRI射频接收机中,为低噪声放大器供电的电压(DC+10 V,如图3所示)是从系统的RF芯线即信号线引出的,测试设计中在每一路放置1个直流开关(K1~K8)控制放大器供电电压的通断。C3为隔直电容,L1,L2起到阻断射频信号,导通直流的作用,当某一路直流开关K闭合,10 V直流电压通过L2,L1到达放大器输出端,为放大器供电,使该路处在噪声放大状态。当K断开时放大器无供电电压,起不到噪声放大作用。控制直流开关K的通断即可为接收机的每一级测试提供冷热噪声源。
测试中,设置各路开关的控制线,使要测的那路导通,其余路断开,闭合该通道的直流开关,然后用频谱仪测量输出的噪声谱密度PNO_n,而后断开该路的直流开关,再用频谱仪测量输出的噪声谱密度PNO_n,由于室温T0(290 K)的噪声谱密度P。约为-174 dBm,设噪声源的等效温度为Tn,Tn,可得:
实验用的频谱仪为Agilent公司的F4411B,测试的中心频率为63.6 MHz,SPAN取20 MHz。选取“Function”中的“Noise",设定合适的VBW/RBW,调节RefLevel使频谱仪位于噪声基底,当Ref Level取-63 dBm时达到噪声基底,经“Average”后显示为-153.1 dBm。控制每路CON线,使得通路再8个信道转换,重复以上的测量步骤,便可得到每一路的噪声系数。
4结 语
利用此种方法对MRI射频接收机各个通道切换下的各级进行了噪声系数测试,实测的各个通道与设计中定义的指标值相差0.2 dB范围内,且由于高频通信系统的接收部分具有一定的共性,即通常下考虑整个接收机的噪声系数特性,接收机的第一级都要接前置低噪声放大器。故此类方法可以推广到其他的射频接收机当中。
本文解决了射频接收机多路信道噪声系数比较以及接收机不同模块的噪声系数测量。独创性地利用接收机前端的低噪声放大器提供冷热噪声源优化Y因子测量方法,并以MRI射频接收机为例设计出性能优越的多路射频开关实现信道切换,实践证明该方法是适用而有效的。
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。