扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
这是在Caspian路由器中实现的一种功能,该路由器记录经过它的每条流的信息,因此可以实现基于流的流量识别和控制功能,以一种新的方式对P2P流量进行识别和控制。并且,如前所述,这一解决方案是基于P2P流的内在特征的,避免了前面两种识别方法中的一些问题。
表1 几种比较常见IP服务的流量特征
服务 持续时间 平均速率 传输字节数
HTTP 短 高 中-高
VPN 长 低 高
Games 长 低 高
Streaming 长 中 高
Telnet 长 低 中
Fileshare / P2P 长 中-高 高
上表1描述了几种不同的应用对应的流量特征[4],由此可以看出,P2P应用的特点是持续时间长、平均速率较高以及总的传输字节数高。这与文件传输如FTP等应用有些类似,但是该类应用可以很方便的通过端口号识别出来,而且由于这些应用与用户的交互性不如Web、视频等应用高,因此出现一定的误判导致对它们的流量限制不会造成大的问题。
另外,根据流所包含的字节数,可以很容易将普通Web流量同P2P文件共享流量区分开。
可见,通过分析不同应用的流量模式,可以实现识别P2P流量的目的。而且这一方法不需要对分组内部用户数据进行检查,因此不受数据是否加密的限制,扩大了其适用范围。但是,由于需要记录每条流的信息,这种方法对内存空间以及处理速度都提出了比较大的要求。这方面国内较为知名的网管软件:聚生网管系统就是采用这种方法,从而使得封堵P2P软件较其他网管软件有明显的优势。
2.4 连接模式识别法
[1]中提出了一种在传输层识别P2P流量的方法,它仅仅统计用户分组的首部信息,而不涉及具体数据。因此一方面克服了前述方法对加密数据无法识别的问题,同时又不涉及用户的具体数据,符合Internet体系结构中的端到端原则。其基本思想是:基于观察源和目的IP地址的连接模式。一些模式是P2P所独有的,因此可以由此直接将P2P流量识别出来;另外一些模式由P2P和其它少数应用所共有,这时可以根据对应IP地址的流历史以及其它特征来减少误判概率。
在这种思想的具体实现中,Thomas Karagiannis等给出了两种启发式方法:
(1) 识别出那些同时使用TCP和UDP进行数据传输的源-目的IP地址对。研究表明,大约2/3的P2P协议同时使用TCP和UDP协议,而其他应用中同时使用两种协议的仅仅包括NetBIOS、游戏、视频等少数应用[1]。因此,如果一个源-目的IP地址对同时使用TCP和UDP作为传输协议,那么可以认为在这一地址对之间的流除一些已知的应用外(对于这些应用可以根据它们的特征将其排除),很有可能就是P2P流,可以将它们加入到候选P2P流的队列中;
(2) 基于监测{IP, 端口}对的连接模式。这一方法的基本依据为:当一个新的主机A加入P2P系统后,它将通过super peer广播其IP地址以及接受连接的端口号port。其他主机收到后利用这一信息与主机A建立连接。这样,对端口port而言,与其建立连接的IP地址数目就等于与其建立连接的不同端口数目(因为不同主机选择同一端口与主机A建立连接的可能性是很低的,完全可以忽略不计)。而其他一些应用如Web,一个主机通常使用多个端口并行接收对象,这样建立连接的IP地址数目将远小于端口数目。但是另外一些应用,如mail、DNS等,也具有类似的属性,因此使用这种方法在实际识别过程中需要将它们区分出来。
3 难点问题与研究路线
由上文的分析我们可以发现,流量的识别过程本质上就是根据流量或其中分组的基本特性,进行模式识别的过程,考虑不同的特性可以设计出不同的识别方法,其实现的性能以及算法的通用性也会有很大不同。
当前P2P流量识别的难点主要来自两个方面:
(1) Internet链路带宽的不断增长;
(2) 数据加密、隐藏等技术在P2P中的应用。前者导致网络中单位时间内数据以及流数目的增大,给数据的采集增加了困难,而后者又使得传统的端口、应用层特征等识别方法不再适用。
流量模式分析和连接模式分析两种方法尽管在一定程度上避开了难点(2)带来的问题,但是它们的分析方法又略显粗糙。而且在这两种方法中,各种特征及其在识别过程中对最终结果的影响因子是由管理人员主观确定的,无法由程序根据识别过程中学习的信息自动进行调整。因此如何提取并有效利用P2P应用的流量及连接特征仍是一个有待研究的问题,在下一步的研究中可以将模式识别和人工智能中的一些技术引入识别过程中,综合运用小波变换、人工神经网络等技术对P2P流量特征进行发掘。
4 结束语
当前,网络中P2P应用的数目不断增加,流量也呈现逐渐增长的趋势,而且,分布式、加密、匿名P2P应用越来越成为主流[3]。在这种情况下,为了满足服务质量、网络规划、计费和审计等基本要求,必须对P2P流量进行有效的识别和监测。本文所描述的几种典型的P2P流量识别方法,分别针对P2P流量不同方面的特征对其进行了分析和识别。但是,随着P2P技术的不断发展,上述识别方法仍需要相应的改进,包括挖掘P2P流量的深度特征,在识别系统中引入智能学习功能等。另外,在未来网络的发展过程中,应当考虑在网络体系结构设计引入这种流量识别监测机制,以便对网络中相关P2P流量进行实时、高效的监控。同时能够根据网络的运行状况以及用户设定的处理规则对其进行智能控制,从而为网络管理人员提供一个便利的管理平台。
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。
现场直击|2021世界人工智能大会
直击5G创新地带,就在2021MWC上海
5G已至 转型当时——服务提供商如何把握转型的绝佳时机
寻找自己的Flag
华为开发者大会2020(Cloud)- 科技行者