Riverbed科技公司日前宣布,世界上最大且最多元化的环境网络----世界自然保护联盟(IUCN)正在使用Riverbed解决方案为世界上一些最具挑战性的地区提供高效的网络和业务运营。自然保护联盟报告称,在部署解决方案后的这一年间,Riverbed应用性能平台的关键组件SteelCentral,SteelFusion和SteelHead,已经帮助世界自然保护联盟利用相同带宽发送了超过以往4.5倍的数据量,并将应用性能提高了80%。
IUCN是监测自然环境并采取必要保护措施的权威机构。其最引人注目的项目包括波恩挑战赛,全球森林再造工作。IUCN的濒危物种红皮书和未来红树林项目,旨在提高亚洲沿海群落抵御海啸和其他灾害的能力。IUCN在全球不同地区开展业务,期望实现集中运营,并将整个机构的数字化作为一项长期目标。
“IUCN在世界上的50多个国家设有办公室,保证各办公室间进行快速可靠的联系至关重要,而我们此前却依赖各地办公室自行连接互联网。新的基础设施将极大改善IUCN不同团队(包括那些位于最偏远地区的团队)网络连接方式,能够访问我们的全球应用并实现相互协作。”IUCN首席信息官Francois Jolles说道。
IUCN希望Riverbed能够帮助应对网络挑战。一切都始于使用Riverbed SteelCentral的端到端可视化功能来监测、分析和解决IUCN的全球网络问题。Riverbed SteelFusion则解决了IUCN的远程办公IT基础设施问题,将来自15个最大办公室的边缘数据100%地集中到企业的数据中心中,确保即时应用开通和数据恢复。IUCN还使用Riverbed SteelHead实现广域网优化以提高本地应用性能。
“我们已经证实了全球化和数字化战略正在发挥作用。其改进效果明显,如:应用响应时间提高80%,相同带宽条件下,数据传输速度提升了4.5倍,数据中心复制数据的时间从24小时缩短至一小时以内。我们已经不在本地备份数据,现在所有数据都是集中存储的,我们拥有的网络基础设施可用来支持创建新的应用。”Jolles说。
好文章,需要你的鼓励
检索增强生成(RAG)正成为AI领域的关键技术,通过结合外部信息检索与大语言模型的生成能力,解决传统模型仅依赖训练数据的局限性。RAG允许模型实时访问外部数据库或文档,提供更准确、更新的信息。该技术可应用于企业文档查询、个人化AI助手等场景,通过向模型提供特定领域知识来获得精准结果。微软专家指出,RAG有助于结合知识与推理、提高模型使用效率,并支持多模态应用。
加州大学伯克利分校研究团队开发出革命性的R2R2R系统,仅需智能手机拍摄和一段演示视频,就能自动生成大量机器人训练数据。该系统绕过了传统昂贵的远程操作和复杂物理仿真,通过3D重建和智能轨迹生成技术,让机器人训练效率提升27倍,成本大幅降低,有望让高质量机器人技能变得像安装手机应用一样普及。
AI数据平台iMerit认为企业级AI工具集成的下一步不是更多数据,而是更好的数据。该公司正式推出学者计划,旨在建立专家团队来微调生成式AI模型。与Scale AI的高吞吐量方法不同,iMerit专注于专家主导的高质量数据标注,需要深度人工判断和领域专业监督。公司目前与超过4000名学者合作,客户包括三家大型生成式AI公司、八家顶级自动驾驶公司等。
腾讯优图实验室提出AnoGen方法,仅用3张异常图片就能训练出高精度工业检测AI。该方法通过扩散模型学习异常特征并生成大量逼真样本,在MVTec数据集上将检测精度提升5.8%,为解决工业异常检测中样本稀缺问题提供了突破性方案。