Riverbed科技公司日前宣布,世界上最大且最多元化的环境网络----世界自然保护联盟(IUCN)正在使用Riverbed解决方案为世界上一些最具挑战性的地区提供高效的网络和业务运营。自然保护联盟报告称,在部署解决方案后的这一年间,Riverbed应用性能平台的关键组件SteelCentral,SteelFusion和SteelHead,已经帮助世界自然保护联盟利用相同带宽发送了超过以往4.5倍的数据量,并将应用性能提高了80%。
IUCN是监测自然环境并采取必要保护措施的权威机构。其最引人注目的项目包括波恩挑战赛,全球森林再造工作。IUCN的濒危物种红皮书和未来红树林项目,旨在提高亚洲沿海群落抵御海啸和其他灾害的能力。IUCN在全球不同地区开展业务,期望实现集中运营,并将整个机构的数字化作为一项长期目标。
“IUCN在世界上的50多个国家设有办公室,保证各办公室间进行快速可靠的联系至关重要,而我们此前却依赖各地办公室自行连接互联网。新的基础设施将极大改善IUCN不同团队(包括那些位于最偏远地区的团队)网络连接方式,能够访问我们的全球应用并实现相互协作。”IUCN首席信息官Francois Jolles说道。
IUCN希望Riverbed能够帮助应对网络挑战。一切都始于使用Riverbed SteelCentral的端到端可视化功能来监测、分析和解决IUCN的全球网络问题。Riverbed SteelFusion则解决了IUCN的远程办公IT基础设施问题,将来自15个最大办公室的边缘数据100%地集中到企业的数据中心中,确保即时应用开通和数据恢复。IUCN还使用Riverbed SteelHead实现广域网优化以提高本地应用性能。
“我们已经证实了全球化和数字化战略正在发挥作用。其改进效果明显,如:应用响应时间提高80%,相同带宽条件下,数据传输速度提升了4.5倍,数据中心复制数据的时间从24小时缩短至一小时以内。我们已经不在本地备份数据,现在所有数据都是集中存储的,我们拥有的网络基础设施可用来支持创建新的应用。”Jolles说。
好文章,需要你的鼓励
Core Memory播客主持人Ashley Vance近日与OpenAI首席研究官Mark Chen进行了一场长达一个半小时的对话。这是Chen近年来最公开、最深入的一次访谈,话题覆盖人才争夺战、研究战略、AGI时间表,以及他个人的管理哲学。
波士顿大学团队发现当今多模态AI存在严重"偏科"问题:面对冲突的文字、视觉、听觉信息时,AI过分依赖文字而忽视真实感官内容。研究团队构建MMA-Bench测试平台,通过创造视听冲突场景暴露了主流AI模型的脆弱性,并提出模态对齐调优方法,将模型准确率从25%提升至80%,为构建更可靠的多模态AI系统提供重要突破。
脑机接口技术正快速发展,特别是非侵入性方法取得重大突破。通过EEG、fNIRS、MEG等传感技术结合人工智能,实现思维解码、图像重构等功能。聚焦超声波技术能精确调节大脑深层结构,为神经疾病治疗带来新希望。消费级可穿戴设备已能改善睡眠、缓解抑郁。这些技术将重塑人机交互方式,从医疗应用扩展至认知增强领域。
UC伯克利研究团队发现了一种名为"双重话语"的AI攻击方法,能够通过简单的词汇替换绕过当前所有主流聊天机器人的安全防护。攻击者只需用无害词汇替换危险词汇,就能让AI在不知不觉中提供危险信息。研究揭示了现有AI安全机制的根本缺陷,迫切需要开发新的防护策略来应对这一威胁。