Riverbed科技公司日前宣布,世界上最大且最多元化的环境网络----世界自然保护联盟(IUCN)正在使用Riverbed解决方案为世界上一些最具挑战性的地区提供高效的网络和业务运营。自然保护联盟报告称,在部署解决方案后的这一年间,Riverbed应用性能平台的关键组件SteelCentral,SteelFusion和SteelHead,已经帮助世界自然保护联盟利用相同带宽发送了超过以往4.5倍的数据量,并将应用性能提高了80%。
IUCN是监测自然环境并采取必要保护措施的权威机构。其最引人注目的项目包括波恩挑战赛,全球森林再造工作。IUCN的濒危物种红皮书和未来红树林项目,旨在提高亚洲沿海群落抵御海啸和其他灾害的能力。IUCN在全球不同地区开展业务,期望实现集中运营,并将整个机构的数字化作为一项长期目标。
“IUCN在世界上的50多个国家设有办公室,保证各办公室间进行快速可靠的联系至关重要,而我们此前却依赖各地办公室自行连接互联网。新的基础设施将极大改善IUCN不同团队(包括那些位于最偏远地区的团队)网络连接方式,能够访问我们的全球应用并实现相互协作。”IUCN首席信息官Francois Jolles说道。
IUCN希望Riverbed能够帮助应对网络挑战。一切都始于使用Riverbed SteelCentral的端到端可视化功能来监测、分析和解决IUCN的全球网络问题。Riverbed SteelFusion则解决了IUCN的远程办公IT基础设施问题,将来自15个最大办公室的边缘数据100%地集中到企业的数据中心中,确保即时应用开通和数据恢复。IUCN还使用Riverbed SteelHead实现广域网优化以提高本地应用性能。
“我们已经证实了全球化和数字化战略正在发挥作用。其改进效果明显,如:应用响应时间提高80%,相同带宽条件下,数据传输速度提升了4.5倍,数据中心复制数据的时间从24小时缩短至一小时以内。我们已经不在本地备份数据,现在所有数据都是集中存储的,我们拥有的网络基础设施可用来支持创建新的应用。”Jolles说。
好文章,需要你的鼓励
北京大学团队开发的DragMesh系统通过简单拖拽操作实现3D物体的物理真实交互。该系统采用分工合作架构,结合语义理解、几何预测和动画生成三个模块,在保证运动精度的同时将计算开销降至现有方法的五分之一。系统支持实时交互,无需重新训练即可处理新物体,为虚拟现实和游戏开发提供了高效解决方案。
AI硬件的竞争才刚刚开始,华硕Ascent GX10这样将专业级算力带入桌面级设备的尝试,或许正在改写个人AI开发的游戏规则。
达尔豪斯大学研究团队系统性批判了当前AI多智能体模拟的静态框架局限,提出以"动态场景演化、智能体-环境共同演化、生成式智能体架构"为核心的开放式模拟范式。该研究突破传统任务导向模式,强调AI智能体应具备自主探索、社会学习和环境重塑能力,为政策制定、教育创新和社会治理提供前所未有的模拟工具。