扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
在本页阅读全文(共2页)
软交换和IMS都属于下一代交换网的范畴,都遵循NGN的基本思路和网络架构,均采用承载与控制分离的思想,均基于IP承载,设计理念一脉相承,属于向NGN演进的不同阶段。韦乐平指出,在部署策略上,可以采用重叠方式引入。
对于电话业务依然增长的国家,软交换的发展阶段难以跨越,我国的几大运营商都已经或正在大规模部署软交换网。从业务角度看,软交换是传统电路域语音网络的演进,侧重PSTN相关业务,外加少量的SIP业务。而IMS是分组域网络的演进,旨在为新的SIP终端提供多媒体业务,目前尚不能完全支持PSTN业务,短期内还难以取代软交换,两者将长期共存。从长远看,当IMS从技术上和经济上可以完全替代PSTN或软交换提供电信级的语音业务后,其将可能最终融合软交换,成为统一的会话类业务的融合平台。
部署软交换的驱动力在于,它是目前阶段PSTN网扩容的唯一现实可靠的选择,是退网PTSN交换机的替代。软交换采用开放、分布、简化、扁平的网络结构,可进行跨网业务的提供,是对网络铺设和更新升级的简化。而且,软交换能够降低网络初始成本和运营成本,提供引入新业务新应用的机会,也是现有网络向全IP网络演进的需要。
引入IMS的驱动力,来自多方面的现实需求。主要包括:其一,增强在IP环境下对多媒体业务的管控运营能力;其二,提供各种新业务和融合业务的机遇,包括移动和固定,乃至电信与非电信之间的融合业务;其三,借助多业务捆绑和融合降低离网率;其四,减少网络的CAPEX/OPEX;其五,长远融合网络架构的建设,促进从管道运营商向全业务综合信息服务提供商的全面转型;最后,替代现有TDM网络和软交换网络。
IMS源于移动,最初的驱动力是发展移动多媒体业务。后来,IMS应用于固网,成为统一的融合网络架构。IMS之所以会成为统一的融合平台,在于其作为全球首个统一的核心网标准,得到了广泛的支持,不仅在电信业内得到了不同阵营(包括CDMA阵营)的支持,而且也得到其他行业的支持。IMS实现了核心网与接入无关,具有很强的业务能力:用SIP信令作呼叫控制,业务控制能力强,业务层和控制层分离,便于生成统一业务逻辑;开放性好,标准化高,各种有线无线业务具有统一核心网、统一会话控制、统一业务和应用平台,统一集中用户数据库、计费系统和业务认证架构以及自动的全球漫游能力。需要注意的是,由于IMS目前尚缺乏吸引人的业务,而且大范围的互操作性测试还未进行,因此用于固定网络尚不成熟。
IMS作为融合的长远目标,既给我们带来了希望和机遇,也同样带来了极大的压力和挑战。
在技术方面,IMS需要稳定的2/3层网络支撑,才可能提供诸如IP路由、DNS和DHCP等关键IMS网络服务;需要确保SIP信令的安全;需要应对来自移动网和WLAN之间的双模业务(DMS)的挑战;需要妥善解决网间互联互通的问题。
在终端方面,解决好IMS客户端的统一规范、互操作和业务互通是IMS发展面临的重大挑战。目前,标准中并没有关于客户端的统一定义和规范,更谈不上互操作性测试。IMS客户端必须支持IMS的相关标准,才能为用户提供一系列IMS服务,因而其客户端的功能和性能要比一般的SIP客户端强得多,自然也要复杂得多。例如,需要支持SIP扩展、IPSec加密、认证、IPv4/IPv6双栈、ISIM卡、语音呼叫连接性等一系列新功能。
引入IMS,必然会对组织架构和流程提出更高的要求。这是因为,融合业务需要跨越不同应用服务器、网络服务、SBC或防火墙、普通网元,因而需要传统网络和IT人员间的顺利交互,传统网络和IT组织架构上的融合无法避免。更进一步来看,历史上传统网络和IT组织有很多完全不同的业务流程和管理标准,需要协调统一。从总体上来看,IMS的引入将影响到包括技术、规划、市场、运维、IT、计费等几乎所有部门,开发和规范部门间的业务流程接口和责任以及高层管理的介入是成功的关键。
由于IMS的分布特性,IMS的引入将从根本上改变运营商运营网络的方式方法。大量的IMS流量将跨越不同的网络,因而确保服务质量需要跨技术领域(有线、无线、IP、交换、IT……)、跨部门组织乃至跨运营商的协调、合作。与此同时,管理的重点也将从网元转向用户应用和业务,才能最终确保端到端IMS应用的性能质量。
总而言之,IMS确有不少潜在的优势,是目前可以看得到的最现实的下一代交换网的核心技术。同时,也不应盲目夸大IMS的作用和优势,IMS更不是包治百病的药方。
下一代移动网 技术升级加速宽带化
移动宽带化和宽带移动化,是当前发展的主要趋势。韦乐平指出,移动技术的升级和演进,正在加速宽带化进程。
在传统的移动通信领域,技术的发展有着“1G-2G-2.5G-2.75G-3G-3.5G-3.75G-B3G/4G”的清晰路标。其中,3.5G为HSPA,要求HSDPA下行数据传输速率为14.4Mbps,目前商用已经达到3.6Mbps;HUSPA上行传输速率达到1.5Mbps。3.75G为LTE和AIE计划,提前采用了OFDMA和MIMO等4G的无线技术等。值得注意的是,此处的“E”事实上已经不是演进而是革命。LTE的目标是在20MHz带宽下提供100Mbps的下行和50Mbps的上行速率,频谱效率分别是HSDPA和HSUPA的4倍和3倍。LTE则很有可能替代3GPP2的AIE而成为统一的3.75G标准。
在CDMA2000 EV-DO方面,由于技术演进路线更加平滑,技术进展也很快,2006年年底开始实施的Rev.A不仅可以提供3.1Mbps的下行速率和1.8Mbps的上行速率,具有QoS能力,而且移动到移动的延时也降到与电路域相当的水平,能提供与CDMA1X大致相当的VoIP语音质量,且在容量上明显提升。目前采用线性干扰消除技术明显改进了下行容量,已经可以同时提供大约55个用户/扇区的VoIP业务,即便在35个VoIP用户条件下,也至少有50%的数据容量可用。
从Rev.A的后续发展看,依照常规是Rev.B和Rev.C(UMB)。考虑到无论哪种技术都将从CDMA转向OFDM,因而,包括Verizon在内的主导CDMA运营商趋向直接转向主流的LTE而非AIE,而核心网则直接转向IMS,也非MMD。
我国主导的TDD制式TD-SCDMA由于得到政府的强有力支持以及采用了N频点等新技术,也取得了突破性进展并提出长期演进路标,实现了HSDPA能力,规划了基于TDD方式的LTE,但商用化进程明显落后于WCDMA和CDMA2000。
B3G/4G是ITU提出的目标,计划在2008年开始制订标准,预计2012年全面完成标准,2015年实现规模商用。开发B3G/4G的基本目标是希望在功能和性能两个方面都比3G有明显提高。标志性目标是在高速移动环境下支持高达100Mbps的下行数据速率,在室内和静止环境下支持高达1Gbps的下行数据传输速率,希望频谱效率比3G(R99版)提高10~15倍,而每比特的成本可望降到十分之一。
历史上,从模拟到数字到3G已经充分利用了频谱效率的提高来实现容量扩大的目标。事实上,HSPA、Rev.A、WiMax等现有的最新移动技术的链路层已经很理想了,频谱效率都已经非常接近香农定理所设定的极限,相差不过2~3dB而已,再往下链路层已经没有多少改进空间了,要付出的代价却越来越高(主要反映在网络设备和终端的复杂性上),主要的出路似乎是采用更宽的频带。事实上,所有无线移动技术(UMTS、CDMA、WiMAX),只要采用类似的技术,其所能达到的频谱效率应该是相近的,不应有很大的差别。
在移动领域,一个最令人困惑的问题是,由多种不同标准组织开发的各种无线接入技术几乎都试图趋向同一目标,即宽带加移动,从而导致本来比较清晰的各自不同定位变得模糊乃至重叠,正在形成竞争多于互补的复杂局面。而1Gbps的速率究竟用来提供什么业务?付出的代价是否值得?这是演进道路上的第二个困惑。这些问题可能都需要市场来回答和抉择,而不单纯由实验室决定。
由于全球移动用户数和数据传输速率的持续攀升,移动网的容量在不断扩大。从理论上看,可以有多种技术手段进行扩容,唯一受限程度最小、扩容效率最高的手段是不断缩小小区半径,从而达到更高频率再用的目的。在这一思路下,移动基站不断演进:从宏蜂窝到微蜂窝,再到微微蜂窝,乃至有朝一日可以演进到毫微微蜂窝或飞蜂窝。
飞蜂窝是一种低成本的室内覆盖基站,利用有线宽带互联网作为回传信道,将无线蜂窝呼叫信号连接到移动核心网。其主要优势有:不再需要GSM/Wi-Fi双模手机,只利用传统手机就可以实现融合业务,降低了成本,扩大了用户群,强化了用户的黏性;无需建立一个新的网络架构,只是将现有移动网络延伸到家庭;也无需对付不同的频谱、无线技术和协议,规避了2.4GHz频段的干扰和噪声;将业务量从移动网的宏小区分流到有线宽带互联网,节约了移动网建设和运维成本,还扩大了移动网的容量;速率高、覆盖好,数据支持能力优于宏小区,便于提供新业务;上行A接口是一个封闭的接口,运营上绕不开运营商,为运营商主导提供了技术保障。对于移动运营商来说,飞蜂窝的大规模应用可能成为UMA的终结者,也势必进一步加快移动替代固网(FMS)的进程。
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。