扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
在本页阅读全文(共4页)
从1952年贝尔实验室Cutler等人进行差分脉冲编码调制(DPCM)技术的研究开始,视频压缩编码技术经历了50余年的发展。在这一过程中,逐渐形成了变换编码、预测编码、熵编码3类经典技术,分别用于去除视频信号的空域冗余、时域冗余及统计冗余。并基于这些经典技术,逐渐形成了以块为单元的预测加变换的混合编码框架。到目前为止,已有的视频编码标准都基于这一框架,包括国际电信联盟(ITU-T)的H.261/3/4视频编码建议以及国际标准化组织/国际电工委员会(ISO/IEC)的MPEG-1/2/4视频编码标准。这些标准及其技术对视频信号提供了一种高效表达方式,使得巨大的视频数据能够在有限带宽下传输以及在有限空间下存储。其中,MPEG-2标准在世界范围内得到了广泛应用,已经成为电视广播应用的基础性支撑标准。但MPEG-2标准制订于1994年,属第一代视频编码技术,近10年视频编码技术的发展,使得MPEG-2标准在新一代IPTV、高清数字电视广播、无线移动媒体通信、流媒体服务等方面的应用上不再高效与经济。新的应用需要新的高效信源编码方案。
数字音视频编解码标准(AVS)标准第2部分:视频(AVS1-P2)[1]的技术规范完成于2003年12月,该标准面向标清高清视频编码应用。AVS视频标准吸收了国内外研究机构近年来的优秀研究成果,属于高效的第二代视频编码技术。相比于MPEG-2标准,编码效率提高2~3倍。如果以AVS视频标准进行标清视频广播应用,可以将MPEG-2标准所需的5~6 Mb/s传输带宽降低到1.5~3 Mb/s。因此,即使在不进行大规模宽带光纤网络升级的情况下,借助于AVS视频技术,IPTV应用也可以在现有家用数字用户线(DSL)网络的2 Mb/s带宽下进行大规模实施。在新的宽带网络上,AVS视频标准将使业务量翻番。
在获得高编码效率的同时,AVS视频标准尽可能保持了低的计算实现复杂度。当编码高清视频信号时,AVS视频获得了与先进视频编码标准AVC/H.264主要档次(Main Profile)相当的编码效率,但解码器的实现复杂度只有其60%~70%。在专利许可方面,AVS通过简洁的一站式许可政策,解决了MPEG-4 AVC/H.264被专利许可问题缠身难以产业化的弊端,并且专利许可费用大大低于国际同类标准。
1.AVS视频技术
1.1混合编码框架
AVS1-P2视频标准采用经典的混合编码框架,如图1所示。此框架与以往视频标准相同,但由于不同标准制订时出于对不同应用的考虑,在技术取舍上对复杂度-性能的衡量指标各不相同,因而在复杂性、编码效率上的表现也各不相同。比如,一般认为H.264的编码器大概比MPEG-2复杂9倍,而AVS视频标准则由于编码模块中的各项技术复杂度都有所降低,其编码器复杂度大致为MPEG-2的6倍,但编码高清序列AVS视频标准具有与H.264相近的编码效率。
在图1所示框架下,视频编码的基本流程为:将视频序列的每一帧划分为固定大小的宏块,通常为16×16像素的亮度分量及2个8×8像素的色度分量(对于4?誜2?誜0格式视频),之后以宏块为单位进行编码。对视频序列的第一帧及场景切换帧或者随机读取帧采用I帧编码方式,I帧编码只利用当前帧内的像素作空间预测,类似于JPEG图像编码方式。其大致过程为,利用帧内先前已经编码块中的像素对当前块内的像素值作出预测(对应图1中的帧内预测模块),将预测值与原始视频信号作差运算得到预测残差,再对预测残差进行变换、量化及熵编码形成编码码流。对其余帧采用帧间编码方式,包括前向预测P帧和双向预测B帧,帧间编码是对当前帧内的块在先前已编码帧中寻找最相似块(运动估计)作为当前块的预测值(运动补偿),之后如I帧的编码过程对预测残差进行编码。编码器中还内含一个解码器,如图1中青绿色部分所示。内嵌解码器模拟解码过程,以获得解码重构图像,作为编码下一帧或下一块的预测参考。解码步骤包括对变换量化后的系数进行反量化、反变换,得到预测残差,之后预测残差与预测值相加,经滤波去除块效应后得到解码重构图像。以上编码框架包含如下关键技术:
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。