扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
自从1977年第1个民用局域网系统ARCnet投入运行以来,局域网以其广泛的适用性和技术价格方面的优势,获得了成功和迅速的发展,已成为数据网络领域中基于宿主机的最流行的网络连接形式。
随着社会对计算机依赖性的迅速增加,用户要求互连的计算机数量更多,类型也更为复杂。现代固态电子技术的发展,使人们可以根据不同的要求选择不同的网络方案,但传统有线网络由于受设计或环境条件的制约,在物理、逻辑和资金方面普遍存在着一系列问题,特别是当涉及到网络移动和重新布局时,所以发展一种可行的无线通信网络技术作为现有数据连接的扩充已成为一种需要。进入90年代以来,随着个人数据通信的发展,功能强大的便携式数据终端以及多媒体终端的广泛应用,为了实现任何人在任何时间、任何地点均能实现数据通信的目标,要求传统的计算机网络由有线向无线,由固定向移动,由单一业务向多媒体发展,更进一步推动了无线局域网(Wireless LAN,以下简称无线LAN)的发展。
无线LAN和个人通信网(PCN)代表了90年代通信网络技术的发展方向。PCN主要用于支持速率小于56kbit/s的语音/数据通信,而无线LAN大多用于传输率大于1Mbit/s的局域和室内数据通信,同时为未来多媒体应用(语音、数据和图像)提供了一种潜在的手段。无线LAN既可满足各类便携机的入网要求,也可作为传统有线LAN的补充手段。当然,局域网技术应用于无线信道之所以成为可能,还在于相关技术的发展解决了某些关键性问题:
(1)天线设计技术的发展,使得在无线LAN中,每个节点在保证信号强度的同时,实现整个区域的覆盖。
(2)高性能、高集成度的CMOS和GaAs半导体技术的发展,以及多芯片模块技术(MCM)的出现,使得在一块低功耗、低成本专用集成电路(ASIC)芯片上可同时实现信号的调制解调,完成在微波以上频段的收发信功能。
(3)网络软硬件设计技术的进展,使芯片实现高速数据处理和复杂协议成为可能。
网络的组成
无线LAN基本上可分为三部分:通信设备、用户终端和支持单元。
通信设备依据功能可分为四类:无线LAN“固定小区”、无线LAN“移动小区”、无线LAN“桥路器”,以及通信保密装置(COMSEC)。“移动小区”与“固定小区”类型相似,区别主要在于当用户移动时能否提供无中断连接和越区切换。无线“桥路器”为分散的“固定小区”或独立的“移动小区”提供中远距离的点对点连接,桥路器检查每个数据包的地址,并确定最佳路由方案。COMSEC装置是为了满足通信链路的保密要求设置的,它可以采用分组交换的数据加密设备(DED)进行网络端-端加密,也可以使用整体加密装置满足整条物理链路的安全要求。
用户终端提供的业务包括电子邮件、数据传送、语音和图像信息。其中,计算数据、仿真结果等,在传输过程中不允许出错,所以对易出错误的无线传输信道而言,须采用纠错能力较强的编码方案,并且数据重传次数显著增加,会给系统带来大量额外开销。而用户的多媒体信息,如语音和图像数据,相对而言容错性能较好,在一帧图像或语音采样中出现少量错误,对数据的整体性能影响不大。
网络支持包括本地网络管理和外部接口设备两大部分。网络管理由网络的整体配置和各主要模块(设备、软件)配置组成,例如:COMSEC的加密算法和密钥管理就被作为网络管理的一部分,由中心统一控制。至于外部接口设备,在其它网络中可能已经予以考虑,但为了满足自维护网络的要求,在条件允许(如空间资源不紧张)的情况下,还是应该保留。
网络的拓朴结构
在无线LAN中,目前使用的拓扑结构主要有三种形式:点对点型、HUB型和全分布型。这三种结构解决问题的方法各有优缺点,目的都是让用户在无线信道中,获得与有线LAN兼容或相近的传输速率。
(1)点对点型
典型的点对点结构,是通过单频或扩频微波电台、红外发光二极管、红外激光等方法,连接两个固定的有线LAN网段,实际上是作为一种网络互连方案。无线链路与有线LAN的连接是通过桥路器或中继器完成的。点对点拓扑结构简单,采用这种方案可获得中远距离的高速率链路。由于不存在移动性问题,收发信机的波束宽度可以很窄,虽然这会增加设备调试难度,但可减小由波束发散引起的功率衰耗。
(2)HUB型
这种拓扑由一中心节点(HUB)和若干外围节点组成,外围节点既可以是独立的工作站,也可与多个用户相连。中心HUB作为网络管理设备,为访问有线LAN或服务器提供逻辑接入点,并监控所有节点对网路的访问,管理外围设备对广播带宽的竞争,其管理功能由软件具体实现。在此拓扑中,任何两外围节点间的数据通信都须经过HUB,所以这种路由方案是种典型的集中控制式。
采用这种结构的网络,具有用户设备简单,维护费用低,网络管理单一等优点,并可与微蜂房技术结合,实现空间和频率复用,但是,用户之间的通信延迟增加,网络抗毁性能较差,中心节点的故障容易导致整个网络的瘫痪。
(3)完全分布型
完全分布结构,目前还无具体应用,仅处于理论探讨阶段,它要求相关节点在数据传输过程中发挥作用,类似于分组无线网的概念。对每一节点而言,或许只有网络的部分拓扑知识(也可通过软件的安装获取全部拓扑结构),但它可与邻近节点以某种方式分享对拓扑结构的认识,由此完成一种分布路由算法,即路由上的侮一节点都要协助将数据传送至目的节点。
分布式结构抗毁性能好,移动能力强,可形成多跳网,适合较低速率的中小型网络,但对于用户节点而言,复杂性和成本较其它结构大幅度提高,网络管理困难,并存在多径干扰和“远-近”问题,同时随着网络规模的扩大,其性能指标下降较快。但在军事领域中,分布式无线LAN具有很好的应用前景。
网络的传输方式
现行的无线LAN按传输方式通常可分为两种:红外系统、射频系统。
1、红外(IR)系统
红外无线LAN在室内的应用正引起极大的关注,由于它采用低于可见光的部分频谱作为传输介质,其使用不受无线电管理部门的限制。红外信号要求视距传输,检测和窃听困难,对邻近区域的类似系统也不会产生干扰,如果采用微蜂房技术,小区频率复用度可为1。
红外波段由于频率太高,不能像射频那样进行调制解调。如果采用聚焦波束的点对点方案,在距离30m时可达到的比特速率至少为5OMbit/s,但出于安全考虑,其发射功率受到限制;漫射(diffuse)技术可为用户提供移动能力,但由于多径干扰以及对环境变化的敏感,一般工作于较低速率;准漫射技术(quasi-diffuse)综合了两者的优点,是目前红外LAN研究的热点,也是发展的方向。在实际应用中,由于IR系统具有很高的背景噪声(日光、环境照明等),一般要求的发射功率较高,而采用现行技术,特别是LED,很难获得高的比特速率(>1OMbit/s),尽管如此,红外无线LAN仍是目前“100Mbit/s以上、性能价格比高的网络”唯一可行的选择。
2、射频(RF)系统
RF无线LAN是目前最为流行的无线LAN,它按频段可划分为三类:
(1)非专用频段,或称为工业、科研、医学(ISM)频段
ISM频段,位于调频无线电和蜂窝电话使用的UHF频段高端。由于此频段频谱资源拥挤,可用的带宽较少,所以必须采用扩频技术。由于优越的抗干扰性和保密性,扩频技术已被广泛应用于军事通信,其概念就是把原始信息的带宽变换成带宽宽得多的类噪声信号,扩频信号辐射的功率是被扩展过10~1000倍原始信息的带宽,这样,功率谱密度也相应降低相同的量,扩频信号对窄带信号(FDMA,TDMA)用户的干扰也相应地降低相同的量,于是扩频信号对窄带用户的干扰就很小了。另一方面,扩频信号本身具有强的抗干扰能力,从这个意义上说,在窄带用户发射功率一定时,由于扩频处理增益的作用,扩频宽带信号可以与窄带信号共享相同的频带。也正鉴于此,美国联邦通信委员会(FCC)在1985年开放了三个频段:(902~928)MHz,(2.4~2.4835)GHz,(5.725~5.85)GHz,允许输出功率小于1W的扩频电台免许可证使用,这极大地促进了无线LAN的发展。
ISM频段中涉及的免许可证电台,可以采用直接序列扩频(DS)、跳频(HF),也可以是混合扩频(DS/HF)。DS技术常用于较高速率的数据通信,跳频系统从本质而言还是窄带传输过程,由于限制了调制带宽,通常速率较低,所以ISM频段的无线LAN大多采用DS扩频,FCC对其使用做了较严格的技术规定。但是,扩频技术并不能从根本上解决可用带宽问题,在无线传输中,数据编码的可用带宽越多,可达到的总的数据率就越高,尽管FCC开放了多个频段,但其总的可用带宽有限,理论上,处理增益l0dB的DS系统(QPSK)可得到的最大数据率分别为2.6Mbit/s(900MHz)和8.35Mbit/s(2.4GHz)。而目前工作于ISM频段中的无线LAN最高数据率均小于Mbit/s。
此外,在ISM频段中射频信号具有一定的透射和绕射能力,频率复用度较低,无法与最新的微蜂房技术结合,阻止了其应用范围的进一步扩大。
(2)专用频段:(18.825~18.875)GHz,(19.165~19.215)GHz
18GHz波段的主要优点是它具有一系列UHF和红外光波的混合频率特性,对于微蜂房网络应用很有吸引力,可获得较高的频率复用度,并且信号不必严格
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。
现场直击|2021世界人工智能大会
直击5G创新地带,就在2021MWC上海
5G已至 转型当时——服务提供商如何把握转型的绝佳时机
寻找自己的Flag
华为开发者大会2020(Cloud)- 科技行者