无线局域网(WLAN)其实是一种新型的局域网(LAN),但是很多网络教育项目中并没有体现出这一点。这也说明目前的无线网络技能教育是有缺陷的,亟待解决。
不久前,无线网络还仅仅被认为是企业的“B计划”。虽然关键时刻也可以使用,但是相比于有线网络来说,无线网络的速度明显要慢,而且不稳定。
但是,过去十年以来,越来越多的用户需要支持移动性,越来越多的移动设备不再需要以太网线缆,无线网络逐渐成熟,并发展成为企业的主要选项,甚至是首选。
这一转变给IT教育的技能黑洞点了一盏明灯。过去那些年,攻读IT学位的学生只是专注于有线网络部署和故障排除的讲座和实验,而管理无线网络环境相关的细节内容都需要到工作中学习。但是,目前无线网络已经成为很多企业IT基础设施的重要组成部分,这就促使无线网络部署、配置以及管理的相关技术的培训不断增多。
尽管有线网络和无线网络之间有相同的部分,但是,无线网络工作需要一些特殊的技能和知识,比如需要了解信令、频谱和网站调查,这些都是管理多个无线网络用户和设备必不可少的内容。
美国宾夕法尼亚州的西彻斯特大学(WCU)的校园网几乎全部采用无线局域网(WLAN)。这个大学每个月几乎有50000到60000个独立设备连接到网络上,几乎每个学生都至少有两台设备,但是Adel Barimani表示情况也不总是如此,Adel Barimani是西彻斯特大学的CIO兼副总监,最近刚刚退休。
西彻斯特大学使用无线局域网已经有近十年了,但是并没有覆盖到校园的每个角落,像演讲大厅和公寓是直到大约三年前才部署的无线网络。另外,该大学有六十多个全职的IT员工,但是其中只有一个员工接受过正规的无线网络培训,而且通过了该大学的WLAN厂商提供的认证项目。
Barimani说:“无线局域网市场发展的很迅速,部署的也越来越多,但是很多业界人士和高等教育环境并没有及时跟上无线网络发展的步伐。我们的无线网络环境中有越来越多的设备,所以我们需要我们的IT人员能够得到专业的培训和认证,并且在技术人员之间多进行一些交叉培训。”
好文章,需要你的鼓励
从4万亿芯片帝国到AI革命,黄仁勋揭秘英伟达30年创新密码:'你必须相信你所相信的'。当计算成本10年下降10万倍,人类将面临怎样的未来?这场斯坦福对话给出了颠覆性答案。
香港中文大学团队首次将DeepSeek-R1推理范式应用到视频理解,开发出Video-R1系统。该系统通过创新的T-GRPO训练方法,让AI学会利用视频时序信息进行深度推理,而非简单识别画面。在多项测试中表现优异,甚至在空间推理任务上超越GPT-4o,为AI视频理解开辟新道路。
谷歌DeepMind发布AlphaEarth Foundations AI模型,能处理每日数TB卫星数据追踪地表变化。该模型如"虚拟卫星"般将全球陆地和沿海水域映射为数字表示,帮助科学家监测食品安全、森林砍伐、城市扩张等关键问题。模型整合光学卫星图像、雷达、激光测绘等数据源,以10×10米精度追踪变化,错误率比其他模型低24%。
上海AI实验室发布视觉强化微调技术,让计算机学会"边看边思考"。该方法通过强化学习训练视觉模型先进行推理再给出答案,在少样本学习中表现优异,单样本图像分类准确率提升24.3%,物体检测精度提升超20分,在开放词汇检测等任务上也实现显著突破。