扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
本文重点介绍WLAN性能测试的重要性及优势,并专门论述了WLAN器件开发和网络规划中关键特性测试的意义和优势。
WLAN技术带来了新挑战,如何才能有效地消除干扰?WLAN基站和接入点功率管理的效率如何?这些问题必须通过综合测试方案加以解决,本文专门论述了WLAN器件开发和网络规划中关键特性测试的意义和优势。
WLAN技术为半导体芯片制造商、网络设备制造商(NEM)、业务提供商和网络管理员带来了新挑战,因为那些性能未经测试或未经证明的器件或设备很容易引发网络故障。因此在交付新的WLAN产品或现场部署WLAN网络之前,需要解决一些特定问题。例如,在2.4GHz射频(RF)范围内,如何才能有效地消除干扰?当移动用户从一个接入点(AP)移动到另一个接入点时,将会出现哪种类型的漫游切换延迟呢?MAC层和上层安全机制的不同实现将对产品和网络的性能将产生怎样的影响?WLAN基站和接入点功率管理的效率如何?上述所有问题及传统的端对端性能、延迟和丢包问题都能通过综合测试加以解决。
实际应用中射频传播的标准化建模
WLAN芯片和设备制造商面临的最大挑战是如何利用2.4GHz和5GHz射频信令实现高稳定性和高性能的物理层。尽管802.11b和802.11a理论上可以分别达到11Mbps和54Mbps的数据率,但实际应用中,数据率很大程度上取决于物理层接口与射频信道接口特性(如多径衰落、路径损耗、延迟扩展和对数正态屏蔽)匹配的程度。开发人员和业务提供商必须通过在实验室再现实际的射频损耗才能获得真正意义上的产品性能。由于很难像双绞线和铜线连接那样再现影响射频传输的环境变量,因此需要解决的问题很多也很复杂。以多径干扰为例,无线电波可被固态物体反射并在原始信号稍作延迟后出现在无线接入点(WLANAP)或W-NIC接收器中,这将引发码间干扰并导致信号质量下降。在办公室环境下,一般反射信号延迟为50ns,而生产车间的延迟则达到300ns。可以采用码间间距调节技术抵消多径干扰的影响,但需要以数据率为代价。此外,当无线电波试图跟踪反射信号及原始信号时,还会出现抖动干扰。
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。