扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
在本页阅读全文(共3页)
根据IETF的标准建议,通过IP网络传输语音信号样本需要增加三个额外的报头,每个报头对应一个网络层次,即IP,UDP和RTP[4]。IPv4的报头长20个字节(8bit),UDP报头为8字节,RTP报头为12字节。图2所示为语音信号的封装格式。
图2VoIP分组封装格式
从图2可见,报头信息的总长度为40字节,即320bit。每次语音样本发送时,这些报头也需要发送一次。因此,报头信息所占用的额外带宽与语音样本的发送频率有关。
3.1.2语音信号封装频率
语音信号的封装频率指的是每秒钟封装发送的语音样本数量。例如,一个语音样本表示20毫秒的语音信号,则每秒钟需要进行50次抽样,即语音信号封装频率为50。语音信号抽样频率的选择是语音质量与带宽需求的折衷。因为40字节的封装报头保持不变,样本越小则所需带宽越多。然而,当样本长度增加时,系统的总时延随之增加,分组丢失带来的信号损失也随之增大。
IETFRFC1889中有一个例子说明语音样本长度为20ms,但该文本并没有将该值作为标准建议。对这个问题还没有标准的答案,参考一般做法,通常取20ms,即每秒封装发送50个样本。这种情况下,每个样本带有320bit的IP/UDP/RTP报头,因此,每秒钟需发送报头16Kbits。
3.1.3编码算法的影响
语音信号编码实现语音信号的数字化,通常还具有一定的压缩功能。语音信号通常采用恒定比特率编码方式,相对于视频信号而言其码率较低。由于采用的编码算法不同,其输出码流的速率和回放后得到语音质量也不一样。ITU-T的G系列推荐标准中包括了多种话音信号(压缩)编码方法。其编码算法和速率见表1。
表1语音信号编码速率与IP传输速率
前面提到,如果样本时间为20ms,则每秒需发送的报头约为16Kbits。当样本长度小于20ms时,可以将几个抽样打入一个分组中发送,这个经验值仍然有效。但当样本长度大于20ms时,通常将一个样本封装到一个分组中,因而封装所需的带宽消耗将小于16Kbits。以表1中G.723.1编码算法为例,由于样本长度为30ms,因而分组封装频率为33.3,其消耗带宽约为320x33.3=10.67Kbits。
每种编码算法对应不同的复杂度,时延特征和语音回放质量。G.729(A)和G.723.1被认为有望成为VoIP应用主流的算法。
表1只考虑了IP层的封装,当IP分组在链路上传输时,通常还要经过链路层协议的封装。以太网正逐渐成为传输技术的主流,以太成帧也是开销较大的链路层技术,包括差错控制编码一般需要16个字节。仍然假定每秒50次的封装频率,则需要增加开销7.2kbps。如采用以太传输,则每个G.711语音会话所需带宽为87.2kps,而每个G.729(A)语音会话所需事宽为31.2kps。
3.1.4报头压缩
对一个典型的8kbps的压缩机制,报头的负荷通常是16kbps(是净荷的2倍),因此有必要采取适当的措施减少报头的传送开销。现在已经存在一些方法,如报头压缩、RTP利用等[5]。通过采用这些方法,可以使用报头的负担降至2或4字节,大大提高了封装的效率。
4 VoIP网络容量规划方法
在电路网络中,对于给定的流量需求,需要估计出正常工作时所需的线路数量(链路容量)。为了防止偶尔出现的异常突发导致的线路数量不足,网络支持呼叫接纳控制功能。线路数量的估计通常根据一定的模型,对于话音业务,常见的两种链路容量估计模型是ErlangB和Engset公式[6]。这两个公式描述了呼叫强度、线路数量及呼叫阻塞率之间的关系。工程上,根据流量实际需求和可以接受的呼叫阻塞率,可以通过查找由公式推算出的表格得到所需的网络容量。
ErlangB或Engset公式的使用需要事先知道网络的流量矩阵,即各条链路的资源需求。然而,在有些情况下,比如新建的网络,流量矩阵通常难以准确得到,因而也无法根据相关模型进行资源规划。为了保证通信的质量,一种可行的方法是按照最坏的情况规划和部署网络资源。显然,采用这种方法,大多数情况下会有一定的资源处于闲置状态。
假定VoIP流量与其它应用流量隔离(VoIP专网或采用区分服务机制实现流量隔离),VoIP会话具有恒定比特率的特性(不考虑静音压缩),我们可以将电路网络中的网络规划方法引入到VoIP网络中。考虑分组网络的无连接特性,资源配置还与流量的路径选择有关,我们假定VoIP网络采用最短路径路由算法,没有引入流量工程机制。
4.1允许呼叫阻塞的网络资源规划方法
在ErlangB和Engset模型中,都包括了呼叫阻塞率参数,即链路容量规划对应于一定的呼叫阻塞。
根据VoIP呼叫到达时间间隔的指数分布特征,我们用Erlang公式描述网络资源的需求。参考传统电话网,假定在核心网络中每对边缘路由器之间建立流量中继管道用于传送来自相应电话网关的呼叫,用话务量α表示每对网关之间的电话负荷的大小。α可通过忙时业务量(BHT,BusyHourTraffic)和平均呼叫保持时间(MCD,MeanCallDuration,单位
式中GoS(GradeofService)表示服务等级,即最大可容忍的阻塞概率。公式(1)表示当链路话务量为α,流量管道已经承载了个呼叫时,两个网关之间的接纳控制机制拒绝呼叫请求的概率。公式(1)也表示出网络容量和服务等级之间存在的折衷关系。给定网关间的流量矩阵,VoIP服务提供商或网络运营商可通过扩大为VoIP业务配置的网络容量以获得更好的服务等级。
当呼叫源的数量(用户)与线路数的比值大于10时,采用ErlangB模型会过高地估计所需线路数量,此时用Engset模型可以更加准确地对所需容量进行规划。与ErlangB模型不同的是,Engset模型不仅需要考虑忙时业务量和阻塞概率,还需要参考呼叫源的数量。有了这三个参数后,同样可以通过查找相应的表格获得所需的线路数量。
4.2无阻塞资源规划方法
当网络的流量矩阵未知时,为保证良好的通信质量,容量配置必须考虑最坏情况下的资源需求,即每个网关支持最多呼叫的流量,且可能任意分布到其他网关。按照这种情况对每条链路进行容量配置则不会发生呼叫阻塞的情形,电话网关也无需进行接纳控制。下面通过一个简单的示例来说明这种方法[7]。
图3VoIP资源规划网络拓扑示例
网络拓扑如图3(a)所示,以链路A-C为例,将通过链路A-C的端到端的呼叫分别表示为a,b,c,d,如图3(b)所示,Ni(i=1, 2, …, 6) 表示第i个网关可以支持的最大呼叫数量。
4.3接纳控制机制的资源收益分析
下面我们将以相同的网络拓扑结构分别计算两种资源配置方法所需的资源,从而可以得出采用接纳控制可以获得的资源收益。网络拓扑仍如图3所示。
这种方法必须精确地估算网络的流量矩阵,且必须定期地更新VoIP业务的网络配置,以适应流量的动态变化。同时,电话网关需实施接纳控制机制,确保每条流量管道同一时间内最多只能传送个呼叫。
在上例中,同样假定为1000,对公式(2)进行计算可得m=2000,即对于图3(a)中链路A-C而言,根据最坏情况配置的链路带宽是允许一定呼叫损失所需带宽的2倍多。当然,上面的约束条件只考虑了网络中的一条链路,而且在实际网络中,约束条件更加复杂,而且任意两点之间的业务量也有一定的具体的约束。
5 VoIP承载网络资源配备情况
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。