科技行者

行者学院 转型私董会 科技行者专题报道 网红大战科技行者

知识库

知识库 安全导航

至顶网网络频道光码分多址(OCDMA)系统的基本原理与系统结构

光码分多址(OCDMA)系统的基本原理与系统结构

  • 扫一扫
    分享文章到微信

  • 扫一扫
    关注官方公众号
    至顶头条

阐述了光码分多址(OCDMA)系统的基本原理,系统结构,系统分类及其国内外的发展现状。

作者:中国联通网站 来源:中国联通网站 2008年6月13日

关键字: 光码分多址 OCDMA 光纤接入 FTTH

  • 评论
  • 分享微博
  • 分享邮件

  摘要 阐述了光码分多址(OCDMA)系统的基本原理,系统结构,系统分类及其国内外的发展现状。着重分析了相干OCDMA系统和非相干OCDMA系统的区别以及它们各自的编解码方案与实现,最后展望了OCDMA的关键技术及发展趋势。

  光码分多址(OCDMA)是一种全新的频率资源利用思路,它的信道占据的是同一个宽频带,原则上不需要光滤波器件,不同信道之间相互独立地发送与接收信号,从而不需要网际规模的时钟同步。OCDMA具有优良的安全性能,抗干扰、抗多径衰落能力强,允许用户随机上下路,随机接入,综合服务,网络管理便捷,协议简单等技术优势。此外,OCDMA系统在光域上对各路信号进行光编码和光解码,对用户数据进行全光信号处理,实现多址通信,是实现真正意义上的全光通信网的最有希望的多址复用技术。

  1、基本原理

  OCDMA概念是由CDMA概念演变而来的,电码分多址(CDMA)主要通过分配码字获得多址接入能力,具有抗干扰、抗多径衰落和提高系统容量等技术特点。CDMA技术已经成功地应用于卫星通信和移动通信领域,但卫星通信和移动通信系统受到使用带宽的限制,而使得CDMA技术优点难以得到最充分地发挥。OCDMA技术将光纤的带宽资源与CDMA技术有机结合解决了这一问题。

  OCDMA是将不同用户的信号用互成正交的码序列来进行光学编码,编码后的备用户信号由星型耦合器叠加在一起,形成一个总的信号数据流进入光纤传输。在接收端,利用光解码器对收到的扩频码序列与本地地址码进行相关运算,采用相干或非相干的方法进行解扩处理,并通过特定阈值判决技术恢复源信号,传送给数据接收器实现数据恢复,其系统原理图[1]如图1所示。

图1典型的OCDMA系统原理图

  1.1 系统结构

  OCDMA技术允许用户异步接入光网络,多个用户可同时使用公用信道。基于OCDMA技术组建的光接入网在光域进行编解码,可以提供高速的信息接入服务,OCDMA接入网通常采用星形拓扑结构。在这种结构中,星形耦合器是网络的中心,每个用户通过两条光纤与之相连,一个作为输入,另一个作为输出。每个用户发出的信号功率通过耦合器被均匀地分配到每一个输出上,网络结构如图2所示。

图2OCDMA星形网络结构

  1.2 OCDMA的地址码

  OCDMA地址码分为单极性和双极性码。单极性主要用于非相干系统中,双极性主要用于相干系统中。单极性码主要有光素数码和光正交码。光素数码是根据代数理论先确定码函数,用既定的码函数给出(0,1)序列中“1”的位置,然后根据码函数分析相关性、多用户干扰以及系统误码率。而光正交码是先确定系统的设计参数,定下码长、码重以及互相关值,在既定的目标下根据某种算法确定(0,1)序列中“1”的位置。双极性码有m序列,哈达码,Gold序列,用于相位编码方案。同单极性码相比,在码长相同的情况下,双极性的相关性更好,而且可以大大提高通信系统的并发用户数量。

  地址码选择应具有如下特征:(1)具有尖锐的自相关峰值;(2)尽可能小的互相关峰值;(3)具有足够多的码字容量。

  地址码码字结构方面,一维地址码中较有代表性的是光素数码(OPC)和光正交码(OOC)。尽管一维码的设计水平不断提高,相应的OCDMA系统实验效果良好,但一维码多址系统的用户容量和系统性能之间存在着矛盾。Park E在时分复用和空分复用的基础上提出二维OCDMA系统的模型框架[2]。随后,Yang G C等提出了多波长光正交码(MWOOC)的理论模型[3],缩短了码字长度,有效地提高了光纤带宽的利用率,使系统性能得到进一步优化。近几年来,围绕提高码字容量,改进系统性能,人们对二维码地址码字构造进行了不少研究,而且为了提供多种QoS,还提出了变重码设计方案[4]。

  2、OCDMA系统编解码

  2.1 OCDMA编解码器原理

  光编/解码器是OCDMA系统的核心部件。OCDMA编/解码器经历了光纤延迟线、体光栅、布拉格光纤光栅(FBG)、阵列波导光栅(AWG)等几种。光编解码器的结构和特性直接影响到OCDMA系统的总体性能,决定着OCDMA系统能否投入实际应用。

  最初使用的编码器大都基于光纤延迟线的时域编码。光纤延迟线编码系统是由并行的几束光纤和2个1×P星形耦合器构成的,同一码字中,编码器之间的差别在于光纤延迟线的长度不同。编码器的作用是将一个输入的短脉冲进行不同的延时,在输出端将得到由这些不同延时的短脉冲合成的脉冲序列,如图3所示。它的缺点是:体积庞大,存在严重的功率损失。

  图3 基于光纤延迟线的编解码器

  另一编码是基于衍射光栅/相位掩模板的频域编码。采用一体光栅对脉冲中的各频率成分进行空间分离和重组,用一相位掩模板来完成必要的脉冲滤波和整形功能。该方法结构松散、有瞬时频偏,造价昂贵,实用较少。

  第三种是基于FBG的时域/频域二维编码。该编码器由一系列中心波长不同的FBG组成,每个光栅中心反射波长可由压电陶瓷装置调节光栅周期进行改变,实现波长编码,光栅的位置起到光纤延时线的作用,使不同的频谱分量在时域上分开,从而实现时域/频域混合编码。该编码器实现比较简单,但地址码的码长受FBG数目的限制。利用AWG做编码器可以解决码长受限问题,易集成但损耗较大。

  2.2 OCDMA编解码方案

  OCDMA系统目前采用的光编解码方案主要有:基于光纤延迟线的时域光正交码方案、基于衍射光栅/相位掩模板的频域编解码方案、基于FBG的编解码方案以及基于AWG的编解码方案。

  在OCDMA系统中,最具有代表性的编解码器实现方案是基于光纤延迟线的时域编解码和基于衍射光栅/相位掩模板的频域编解码方案。在非相干OCDMA系统中,基于光纤光栅的谱域编解码方案逐渐成为主流。前两个方案的实现主要受器件的影响,如需要造价昂贵的相干超短脉冲光源,使得成本较高,缺乏市场竞争力。非相干OCDMA系统对光地址码集的相关性能要求很高,而现有光地址码集的多用户干扰问题突出,限制了系统的容量。

  目前,比较看好的是近几年发展起来的基于FBG单光束编/解码技术。最初采用的是在一根光纤上按序写入(或接续而成)的FBG阵列,光栅的空间位置和反射幅度用于编码。随着光检测技术的发展,光栅的反射相移也能检测到,相位编码也就成为可能,二维光栅矩阵编码(相位和幅度)器也已在实验室应用。目前,较好的方法是在一根光栅上进行连续的幅度和相位调制,形成SSFBG(超结构光纤光栅),用它替代离散FBG阵列进行编/解码。

  基于SSFBG来实现双极性编码的OCDMA系统方案在实验室得到了实现。一个是南安普顿大学的P.C.Teh等人于2001年提出的一套利用SSFBG的相位编解码OCDMA系统[5]。该系统采用m序列,码字为1110010,码片周期为6.4 ps,即码片速率为160 Gchip/s,该码字对应的SSFBG长度为4.64 mm。用户数据是10Gbit/s的231-1的随机比特序列,采用的光源是锁模铒光纤环激光器(EFRL),该激光器可以产生重复速率为10GHz、宽度为2ps的孤子脉冲。另外一个是日本大阪大学的王旭等人在2004年提出的基于SSFBG的全异步OCDMA系统方案[6],该系统用户数为10,各个用户的码字为511 chip二进制相移键控Gold序列,码片速率为640Gbit/s,编解码利用SSFBG实现。用户的数据为1.25 Gbit/s,231-1随机比特序列,系统采用的光源为锁模激光器(MLLD),输出脉冲宽度为1.8ps。

  3、OCDMA系统分类

  3.1 相干系统和非相干系统

  从信号处理角度来讲,OCDMA系统可分为相干系统和非相干系统。前者利用光场的相位来传输信号,而后者则是用光场的能量。在OCDMA系统中,相干或非相干编码方式的区别体现了编解码过程中信号变换的本质,限制着系统所采用的地址码的类型,并最终决定系统的性能。非相干系统中,信道编码采用光强调制方式,利用光信号的有无来表示二进制的“1”和“0”,终端采用平方律检测光信号,信号是功率叠加而不是振幅叠加。非相干系统容易实现,但实现多址功能时,编解码器结构复杂,码间串扰不可避免,误码率较高。相干的CDMA与非相干的CDMA相比,最主要的优点在于它具有较高的信噪比。这主要是由于码间具有较好的正交性,可以产生较高的处理增益。相干的OCDMA的主要缺点是技术上实现较困难,以及相位移光信号的利用率较低。

  3.2 一维和二维系统

  按照编码维数,OCDMA系统可分为一维OCDMA系统和二维OCDMA系统[7]。

  在一维OCDMA系统中,用户地址码是在时域上扩展的{0,1}序列,要求这些地址码具有良好的自相关性和互相关性,这将导致码序列很长,扩频系数很大,编解码器结构复杂。

  二维OCDMA系统中,每个地址码序列的光脉冲不仅在时域上扩展,同时还在空间或波长上扩展。在相同扩频系数下,二维OCDMA系统不仅码字数增多,而且同时使用的用户数也大有提高,发展潜力较大。二维OCDMA系统常采用的方案有以下3种:

  (1)T/SOCDMA(时分/空分OCDMA)同一码字中的不同脉冲调制在不同光纤信道上,并行传输方式,同步解调。

  (2)WDM+OCDMA同一码字可以在不同波长上重复使用。在相同扩频系数下,码字数和并发用户数都成倍增长。

  (3)MW OCDMA(多波长OCDMA,有时也称跳频OCDMA)同一码字中的不同脉冲调制在不同光纤波长上,每个码字(也可看成矩阵)同时在时域和波长上扩展。

  3种方案的比较如下:T/SOCDMA系统需要多个耦合器,而且要求每对编解码器中不同空间信道的时延要完全相同。WDM+OCDMA系统误码性能优于MWOCDMA,但是码字数要远小于MW OCDMA。

  4、OCDMA研究现状

  OCDMA研究在向高速率、集成化、可调谐和更多用户的方向发展。英国南安普顿大学的光电磁研究中心于2002年实现了16通道基于16码片(码片速率为20 Gchip/s)SSFBG的OCDMA系统[8]。日本国家信息和传输技术研究机构在美国召开的OFC’2005上展示了十用户、基于SSFBG的异步OCDMA系统,码片速率高达640 Gchip/s(码长511,比特速率1.25 Gbit/s)[9]。加拿大的McGill大学基于对非相干OCDMA研究研制成了时域/频域扩展的二维的OCDMA编解码器件,支持传输速率10 Gbit/s。美国加利福尼亚大学在国防高级研究项目机构的支持下,研制出了基于AWG的单片集成的编解码器芯片,芯片大小为12 mm×4 mm,实现可调谐的一维编码技术。美国普林斯顿大学研制了利用环形网的全光分插复用单元(OADM),用户数为4,单用户的比特速率为2.5 Gbit/s。

  国内的OCDMA研究水平相对要落后一些,研究机构主要有浙江大学光通信交叉研究中心、电子科技大学应用所、上海交大区域光纤通信网与新型光纤通信系统国家重点实验室、清华大学以及深圳大学信息工程新技术研究中心等。其中浙江大学光通信交叉研究中心在OCDMA编解码技术的领域已经展开了广泛的研究,并有了OCDMA实验平台,并能初步承载155 Mbit/s的系统。相比之下,其他研究机构还大多限于码字研究,编解码器的实现等,鲜有OCDMA实验系统的报道。

  OCDMA的发展一直以接入网、码字、编解码技术及大容量传输等为主要研究方向,近两年来则开始对其安全问题进行研究,特别是在美国和日本,都开始了一些由国家资助的重大研究项目。在美国,由DARPA启动了一项数千万美元的OCDMA研究计划。在日本,OCDMA技术已被政府列入未来光通信网络发展的战略计划。OCDMA的攻击方式有码字拦截,能量侦听等,特别是Thomas H Shake对相干频域编码的OCDMA系统的安全性有了初步的研究和对策,在文献[10]中提出了两种侦听模型。

  5、发展与展望

  为满足未来通信的需要,使OCDMA技术更好的适应未来全光网发展需要,人们对OCDMA研究将关注如下几个关键技术:

  (1)具有大容量及优良特性的光正交码的地址码字构造问题。

  (2)可调的可编程光/解码器的设计和实现问题。

  (3)如何与其他光通信技术进行融合的问题。

  (4)拓扑结构分析,网络组建的实现及网络协议的探索。

  (5)物理层编码与信息层编码的技术融合。

  (6)OCDMA系统的安全性能模型的描述。

  (7)通过分析各种OCDMA系统的安全隐患,提出相应的优化方案和安全策略。

  (8)各种攻击OCDMA系统安全性能的手段及其仿真和实验验证。

  (9)结合新型的信号调制方式,探索增强OCDMA系统的安全性能的编码、检测技术及相应的优化码字。

  (10)对物理层编码与信息层编码的安全性能进行分析比较,并研究两种技术融合的方式及其对提升OCDMA系统的安全性能的影响等。

  采用OCDMA技术可以将传输的信息经过光学编码成伪随机的光学码,所以具有很好的物理安全性,使得OCDMA技术在保密通信中有广阔的应用前景,特别是在对于安全性能要求较高的政府机构、银行证券以及军事通信等领域。

  参考文献

  1 董海峰.OCDMA通信技术及其新发展[J].光电子技术.2003,1:52-57

  2 Park E,Mendez A J,Gasmeriere E M.Temporal/spatial CDMA networks:Design,demonstration and comparison with temporal network.IEEEphotonics Technology Letters,1992,4(10):1160-1162.

  3 Yang G C,Kwong C.Performance comparison of multiwavelength CDMA and WCDMA+CDMA for fiber-optic networks.IEEE Transaction on Communication,1997,45(11):1426-1436。

  4 Ivan B D,Bane V,Judy R.Multi-Weight Unipolar Codes for Multimedia.Spectral-amplitude-coding optical CDMA systems.IEEE Communications Letters,2004,8(4):259-261.

  5 P.C.Teh,P.Petropoulos,M.Ibsen,and D.J.Richardson. Phase encoding and decoding of short pulses at 10 Gb/s using superstructured fiber Bragg gratings[J].IEEE Photonics technology letters.2001,13(2):154-156

  6 Taro Hamanaka,Xu Wang,et al.Ten-User Truly Asynchronous Gigabit OCDMA Transmission Experiment With a 511_Chip SSFBG En/Decoder[J].Journal of Lightwave Techonlogy.2006,24(1):95-100

  7 X.Wang,K.Matsushima,A.Nlshiki,N.Wada,and K. Kitayama.High reflective Superstructured FBG for coherent optical code generation and recognition[J].Opt.Express.2004,12(22):5457-5468.

  8 P.C.The,M.Ibsn,L.B>Fu,J.H.Lee,Z.Yusoff and D.J.Richardson.A 16-channel OCDMA system(40CDMA*4 WDM)based on 16-chip,20 Gchip/s superstructuered fiber Bragg gratings and DFB fiber laser transmitter[C].OFC 2002

  9 X.Wang,Naoya Wada,Taro Hamanaka,Ken-ichi Kitayama and Akihiko Nishikl.10-User Truly-asynchronous OCDMA experiment with 511-chip SSFBG en/decoder and SC-based optical thresholder[C].2004 OSA

  10 Thomas H Shake.Confidentiality Performance of Spectral-Phase-Encode Optical CDMA.[J].Journal of lightwave technology.2005,23(4):1652-1663.

  11 张居梅,任菁圃,牛忠霞.全光OCDMA技术分类及发展[J].现代电子技术。2003,15:1-3

  12 李传起,孙小菡.OCDMA系统地址码理论[M].合肥:中国科学技术大学出版社.2005.6

  13 王福昌,何赛灵,陈彪.光码分多址通信系统研究及实现[M].浙江大学硕士学位论文.2006.5

  14 吉建华,范戈.基于光正交码的多波长OCDMA与WDM+OCDMA系统的性能分析[J].光通信技术.2002,26(2):30-32.

  15 Peropoulos,Wada N,The P C,et al.Demonstration of 64-chip OCDMA system using superstructured fiber gratings and time-gating detection [J].Photonic Technol.Letters.2001,13(11):1239-1241。

    • 评论
    • 分享微博
    • 分享邮件
    邮件订阅

    如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。

    重磅专题
    往期文章
    最新文章