科技行者

行者学院 转型私董会 科技行者专题报道 网红大战科技行者

知识库

知识库 安全导航

至顶网网络频道深入讲解有关数据挖掘的10个常见问题

深入讲解有关数据挖掘的10个常见问题

  • 扫一扫
    分享文章到微信

  • 扫一扫
    关注官方公众号
    至顶头条

硬要去区分Data Mining和Statistics的差异其实是没有太大意义的。定义为Data Mining技术的CART、CHAID或模糊计算等等理论方法,也都是由统计学者根据统计理论所发展衍生。

作者:赛迪网 Alice 来源:天新网 2008年3月22日

关键字: SQL 数据库 SQL Server Mssql

  • 评论
  • 分享微博
  • 分享邮件

在本页阅读全文(共3页)

八 Web Mining 和Data Mining有什么不同?

如果将Web视为CRM的一个新的Channel,则Web Mining便可单纯看做Data Mining应用在网络数据的泛称。

该如何测量一个网站是否成功?哪些内容、优惠、广告是人气最旺的?主要访客是哪些人?什么原因吸引他们前来?如何从堆积如山之大量由网络所得数据中找出让网站运作更有效率的操作因素?以上种种皆属Web Mining 分析之范畴。Web Mining 不仅只限于一般较为人所知的log file分析,除了计算网页浏览率以及访客人次外,举凡网络上的零售、财务服务、通讯服务、政府机关、医疗咨询、远距教学等等,只要由网络连结出的数据库够大够完整,所有Off-Line可进行的分析,Web Mining都可以做,甚或更可整合Off-Line及On-Line的数据库,实施更大规模的模型预测与推估,毕竟凭借网际网络的便利性与渗透力再配合网络行为的可追踪性与高互动特质,一对一行销的理念是最有机会在网络世界里完全落实的。

整体而言,Web Mining具有以下特性:1. 数据收集容易且不引人注意,所谓凡走过必留下痕迹,当访客进入网站后的一切浏览行为与历程都是可以立即被纪录的;2. 以交互式个人化服务为终极目标,除了因应不同访客呈现专属设计的网页之外,不同的访客也会有不同的服务;3. 可整合外部来源数据让分析功能发挥地更深更广,除了log file、cookies、会员填表数据、线上调查数据、线上交易数据等由网络直接取得的资源外,结合实体世界累积时间更久、范围更广的资源,将使分析的结果更准确也更深入。

利用Data Mining技术建立更深入的访客数据剖析,并赖以架构精准的预测模式,以期呈现真正智能型个人化的网络服务,是Web Mining努力的方向。

九 Data Mining 在 CRM 中扮演的角色为何?

CRM(Customer Relationship Management)是近来引起热烈讨论与高度关切的议题,尤其在直效行销的崛起与网络的快速发展带动下,跟不上CRM的脚步如同跟不上时代。事实上CRM并不算新发明,奥美直效行销推动十数年的CO(Customer Ownership)就是现在大家谈的CRM—客户关系管理。

Data Mining应用在CRM的主要方式可对应在Gap Analysis之三个部分:

针对Acquisition Gap,可利用Customer Profiling找出客户的一些共同的特征,希望能藉此深入了解客户,藉由Cluster Analysis对客户进行分群后再透过Pattern Analysis预测哪些人可能成为我们的客户,以帮助行销人员找到正确的行销对象,进而降低成本,也提高行销的成功率。

针对Sales Gap,可利用Basket Analysis帮助了解客户的产品消费模式,找出哪些产品客户最容易一起购买,或是利用Sequence Discovery预测客户在买了某一样产品之后,在多久之内会买另一样产品等等。利用 Data Mining可以更有效的决定产品组合、产品推荐、进货量或库存量,甚或是在店里要如何摆设货品等,同时也可以用来评估促销活动的成效。

针对Retention Gap,可以由原客户后来却转成竞争对手的客户群中,分析其特征,再根据分析结果到现有客户数据中找出可能转向的客户,然后设计一些方法预防客户流失;更有系统的做法是藉由Neural Network根据客户的消费行为与交易纪录对客户忠诚度进行Scoring的排序,如此则可区隔流失率的等级进而配合不同的策略。

CRM不是设一个(080)客服专线就算了,更不仅只是把一堆客户基本数据输入计算机就够,完整的CRM运作机制在相关的硬软件系统能健全的支持之前,有太多的数据准备工作与分析需要推动。企业透过Data Mining可以分别针对策略、目标定位、操作效能与测量评估等四个切面之相关问题,有效率地从市场与顾客所搜集累积之大量数据中挖掘出对消费者而言最关键、最重要的答案,并赖以建立真正由客户需求点出发的客户关系管理。

十 目前界有哪些常用的Data Mining分析工具?

Data Mining工具市场大致可分为三类:

1. 一般分析目的用的软件包

SAS EntERPrise Miner

IBM Intelligent Miner

Unica PRW

SPSS Clementine

SGI MineSet

Oracle Darwin

Angoss KnowledgeSeeker

2. 针对特定功能或产业而研发的软件

KD1(针对零售业)

Options & Choices(针对保险业)

HNC(针对信用卡诈欺或呆帐侦测)

Unica Model 1(针对行销业)

3. 整合DSS(Decision Support Systems)/OLAP/Data Mining的大型分析系统

Cognos Scenario and Business Objects

    • 评论
    • 分享微博
    • 分享邮件
    邮件订阅

    如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。

    重磅专题
    往期文章
    最新文章