扫一扫
分享文章到微信
扫一扫
关注官方公众号
至顶头条
作者:赛迪网 来源:赛迪网安全社区 2007年10月18日
关键字:
在本页阅读全文(共3页)
6、进一步探讨:
对于方程H=F(...,sn,...,H),有些时候并不一定有解析解。
如果有解析解的情况,就是 H=HASH=f(sn...),其它量为常值看待,很容易给出。这样的注册机,其实是要求输入user和sn两个量来确定HASH,而不是通常的一个量。
如果方程没有解析解的情况,好像也要穷举?比如 X=a+b**(X+c),这里X为变量,a,b,c为常量。 例如
|
如果我们要相信私钥起作用的话,那肯定没有办法了。穷举也许是最笨的办法,我们为什么不能构建其它的关系来满足方程达到可以产生解析解呢?只要这些构建的关系能够通过程序的诸如数据长度等基本的验证机制就行了。上面的方程可以这样构建额外的关系就可以简化并构成简单的联立方程组,而构成这样的关系方程实在太多,比如:
|
如果有某种限制条件,我们同样可以令
|
既然穷举,我们举几个特例就可以饶过这些基本的判断了。
7、ECC验证
真正的ECC加密比上面的复杂,但基本原理一样。只不过他采用了椭圆曲线映射验证机制,过程更复杂,也需要更多的构建搭桥技术。
五、结论
ECC能否破解?答案是:能!
只是如果程序验证函数的复杂程度如果够难的话,那就看你的逆向功底和数据函数构建能力了。理论上,只要另外构建一个或多个关系函数,这样就可以代替私钥了,凡是穷举好像都可以这样做,而且做出的注册机应该有无穷多个。
如果您非常迫切的想了解IT领域最新产品与技术信息,那么订阅至顶网技术邮件将是您的最佳途径之一。
现场直击|2021世界人工智能大会
直击5G创新地带,就在2021MWC上海
5G已至 转型当时——服务提供商如何把握转型的绝佳时机
寻找自己的Flag
华为开发者大会2020(Cloud)- 科技行者