随着关于网络功能虚拟化(NFV)的讨论持续升温,特别是在移动服务提供商市场,运营商正在尝试虚拟化演进分组核心(EPC)中的关键功能,诸如服务网关(SGW)、PDN网关(PGW)和移动性管理实体(MME)。通过利用现成的x86平台运行这些功能,他们可以从硬件系统中分离软件轨迹,并实现一定程度的供应商独立性。至少原则上是这样。
挑战变得越来越复杂。虽然一些功能只需要相对较低的带宽,并且不需要高容量和高处理能力,但是其他功能需要。对于那些功能来说,x86平台的魅力在于易于扩展和弹性开通能力。但这也是事情开始变得有点棘手的地方。
在许多情况下,虚拟化环境中的扩展性能需要对数据包进行特殊处理。例如,在使用单根输入/输出虚拟化(SR-IOV)等技术执行管理程序和虚拟交换旁路时。通常,企业将使用专门的网络接口卡(NIC),结合硬件加速或NIC级卸载以提高性能。但是要利用这些技术来加速和改进性能,企业需要使用这些特定的卡,这样,就会在软硬件方面带来一定程序被锁定的情况。
换句话说,一旦运营商部署了加速技术,他们就不能简单地将一台服务器交换为任何其他基于x86的服务器。相反,他们需要继续与提供硬件加速和NIC卡的同一家供应商合作,甚至可能从该供应商处购买产品,以确保他们的软件可轻松迁移至具备硬件辅助功能的新一代NIC卡。
接下来,使用NIC卸载、管理程序/内核旁路和其他技术只能提升少量性能时,就需要通过多个服务器来扩展性能了。如果被虚拟化的网络功能是无状态的,则相对容易。然而,如果需要在横向扩展的NFV解决方案上保持状态和负载平衡,则该过程变得更复杂。在后一种情况下,企业将需要一个负载均衡器,以读取与网络功能相关的协议,关联各个接口的流量(如果需要),然后在虚拟化EPC功能的横向扩展实例之间智能地平衡负载。
这个过程让我想起了早期的电子商务和商业互联网,那个时候也是从运行x86的web服务器开始的。随着网站和Web应用的流量增长,那些Web服务器和应用程序需要扩展。这就需要流量在横向扩展解决方案之中达到负载均衡。对于电子商务流量,这需要诸如状态负载均衡器之类的功能来跟踪会话和cookies,以及向Web应用程序或服务器的正确实例发送正确的流量。虽然这最初可以通过基于软件的负载均衡器实现,但是随着流量增长,该过程就需要一个专用设备,可以执行各种任务,包括负载均衡、运行状况检查和负载重新分配等。随着时间的推移,这导致了具有现场可编程门阵列(FPGA)和硬件辅助功能的专用负载均衡器的出现,并最终实现了应用交付控制器。
网络功能虚拟化(NFV)世界是否朝着同一个方向发展呢?如果是,谁将为所有不同的虚拟化网络功能构建负载均衡器?如果每个供应商都提供具有不同虚拟化网络功能(VNF)的解决方案,用于在横向扩展环境中进行负载平衡,那么每个虚拟化EPC功能是否会有特定供应商的负载平衡器呢?
两个场景(即,使用专用加速引擎和NIC用于服务器内的性能改进,以及使用专用的状态负载均衡器设备在服务器之间分配流量)一起使用,引发了一个问题:NFV是否会走向更紧密的供应商绑定之路,而不是供应商具备更大的独立性?在当前的发展轨迹中,结果是肯定的。
注:本文最初发表于SDX Central
好文章,需要你的鼓励
英特尔第三季度财报超华尔街预期,净收入达41亿美元。公司通过裁员等成本削减措施及软银、英伟达和美国政府的大额投资实现复苏。第三季度资产负债表增加200亿美元,营收增长至137亿美元。尽管财务表现强劲,但代工业务的未来发展策略仍不明朗,该业务一直表现不佳且面临政府投资条件限制。
美国认知科学研究院团队首次成功将进化策略扩展到数十亿参数的大语言模型微调,在多项测试中全面超越传统强化学习方法。该技术仅需20%的训练样本就能达到同等效果,且表现更稳定,为AI训练开辟了全新路径。
微软发布新版Copilot人工智能助手,支持最多32人同时参与聊天会话的Groups功能,并新增连接器可访问OneDrive、Outlook、Gmail等多项服务。助手记忆功能得到增强,可保存用户信息供未来使用。界面新增名为Mico的AI角色,并提供"真实对话"模式生成更机智回应。医疗研究功能也得到改进,可基于哈佛健康等可靠来源提供答案。同时推出内置于Edge浏览器的Copilot Actions功能,可自动执行退订邮件、预订餐厅等任务。
纽约大学等机构联合开发的ThermalGen系统能够将普通彩色照片智能转换为对应的热成像图片,解决了热成像数据稀缺昂贵的难题。该系统采用创新的流匹配生成模型和风格解耦机制,能适应从卫星到地面的多种拍摄场景,在各类测试中表现优异。研究团队还贡献了三个大规模新数据集,并计划开源全部技术资源,为搜救、建筑检测、自动驾驶等领域提供强有力的技术支撑。