ZD至顶网网络频道 01月25日 国际消息: 作为全球速度最快的每秒6.5 Tb以太网交换机芯片TofinoTM的缔造者,Barefoot Networks公司出席了于本月24日召开的开放计算项目(简称OCP)Disaggregate: Networking大会。Barefoot Networks公司联合创始人兼首席科学家Nick McKeown在会上探讨了为何有必要实现转发平台的可编程能力、相关新规范以及将在网络领域实现的新型用例。另外,Barefoot Networks公司还展示了其Wedge 100B系列交换机——包括传输速率达每秒3.2 Tb的1RU 32 x 100GE交换机Wedge 100BF-32X与传输速率达每秒6.5 Tb的2RU 65 x 100GE交换机Wedge 100BF-65X。这些交换机产品将内置有Barefoot Networks公司的Tofino技术,其不仅能够为OCP生态系统用户带来更出色的以太网交换机性能表现,同时亦将提供一条更具可编程性的使用管道。
这些Wedge 100B系列交换机支持FBOSS、SONiC以及多种其它交换机操作系统,且可通过OCP的交换机抽象层(简称SAI)API、switchAPI(属于一款扩展性开放API)或者由用户设计之API进行控制。默认运行于Tofino之上的“switch.p4”程序能够将Wedge 100B系列交换机转化为一台架顶式交换机,且提供全部与数据中心规范要求相符的标准功能。用户可以根据选择向其中添加或者移除部分功能、添加新协议、变更表大小、提供更出色的可访问性并折叠包括四层负载均衡在内的各类中间代理功能。Wedge 100B平台还引入了多项增强要素,其中包括提供经过优化的电源供应单元、更低成本的PCB设计、经过改进的制造设计以及更强大的CPU模块等等。这些交换机产品运行一款经过更新的OpenBMC版本。
OCP的Disaggregate: Networking大会由Facebook公司主办,选址于加利福尼亚州门洛帕克。此项会议主要面向对于开放及拆分网络解决方案抱有兴趣的工程师群体,旨在挖掘以拆分化方式更为高效、灵活且可扩展地创建硬件与软件这一重要机遇。
“开放计算网络项目对于Barefoot Networks与整个技术社区共享其两套Wedge 100B硬件设计方案的作法感到振奋,”OCP网络项目联度负责人Omar Baldonado表示。“我们期待着这些Wedge 100B设计方案能够带来更多创新性成果,也期待着其可编程交换机芯片能够为行业带来更多灵活性助力。”
“Barefoot Networks很高兴能够将其基于Tofino技术的Wedge 100B交换机设计方案与整个开放计算项目社区进行共享,”Barefoot Networks公司联合创始人兼CEO Martin Izzard指出。“利用Wedge 100B平台,OCP生态系统、网络拥有者以及架构师们能够以前所未有的方式充分把握全面分解的网络堆栈、深入转发层并借此构建起更适合自身需求的网络体系。”
作为公布于2016年6月的方案,Barefoot Networks公司的Tofino以太网交换机ASIC与Capilano软件开发环境(简称SDE)通过开放转发层消除了实现全面网络可编程能力的最后一项障碍,允许使用者对网络之上的可靠数据包传输进行细粒度控制。其首款Tofino芯片于2016年第四季度交付至客户手中,而该公司亦不断吸引到更多行业领导者加入其网络合作伙伴阵营。
上市时间
Barefoot公司的Tofino芯片已经于2016年第四季度开始发布样品。Wedge 100BF-32X与Wedge 100BF-65X系统目前已经允许用户通过Edgecore Networks进行订购。
好文章,需要你的鼓励
大多数用户只使用计算机预装的操作系统直到报废,很少尝试更换系统。即使使用较老版本的Windows或macOS,用户仍可通过开源软件获益。本文建议通过重新安装系统来提升性能,Mac用户可从苹果官方下载各版本系统安装包,PC用户则建议使用纯净版Windows 10 LTSC以获得更长支持周期。文章强调备份数据的重要性,并推荐升级内存和固态硬盘。对于老旧系统,应替换需要联网的内置应用以降低安全风险,定期进行系统维护清理。
新加坡南洋理工大学研究团队提出"棱镜假设",认为图像可像光谱一样分解为不同频率成分,低频承载语义信息,高频包含视觉细节。基于此开发的统一自编码系统UAE,通过频率域分解成功统一了图像理解和生成能力,在多项基准测试中超越现有方法,为构建真正统一的视觉AI系统提供了新思路,有望推动计算机视觉技术向更智能统一的方向发展。
微软杰出工程师Galen Hunt在LinkedIn上宣布,目标是到2030年消除微软所有C和C++代码。公司正结合AI和算法重写最大的代码库,目标是"1名工程师、1个月、100万行代码"。微软已构建强大的代码处理基础设施,利用AI代理和算法指导进行大规模代码修改。该项目旨在将微软最大的C和C++系统翻译为内存安全的Rust语言,以提高软件安全性并消除技术债务。
芝加哥伊利诺伊大学团队提出QuCo-RAG技术,通过检查AI训练数据统计信息而非内部信号来检测AI回答可靠性。该方法采用两阶段验证:预检查问题实体频率,运行时验证事实关联。实验显示准确率提升5-14个百分点,在多个模型上表现稳定,为AI可靠性检测提供了客观可验证的新方案。