ZD至顶网网络频道 01月25日 国际消息: 作为全球速度最快的每秒6.5 Tb以太网交换机芯片TofinoTM的缔造者,Barefoot Networks公司出席了于本月24日召开的开放计算项目(简称OCP)Disaggregate: Networking大会。Barefoot Networks公司联合创始人兼首席科学家Nick McKeown在会上探讨了为何有必要实现转发平台的可编程能力、相关新规范以及将在网络领域实现的新型用例。另外,Barefoot Networks公司还展示了其Wedge 100B系列交换机——包括传输速率达每秒3.2 Tb的1RU 32 x 100GE交换机Wedge 100BF-32X与传输速率达每秒6.5 Tb的2RU 65 x 100GE交换机Wedge 100BF-65X。这些交换机产品将内置有Barefoot Networks公司的Tofino技术,其不仅能够为OCP生态系统用户带来更出色的以太网交换机性能表现,同时亦将提供一条更具可编程性的使用管道。
这些Wedge 100B系列交换机支持FBOSS、SONiC以及多种其它交换机操作系统,且可通过OCP的交换机抽象层(简称SAI)API、switchAPI(属于一款扩展性开放API)或者由用户设计之API进行控制。默认运行于Tofino之上的“switch.p4”程序能够将Wedge 100B系列交换机转化为一台架顶式交换机,且提供全部与数据中心规范要求相符的标准功能。用户可以根据选择向其中添加或者移除部分功能、添加新协议、变更表大小、提供更出色的可访问性并折叠包括四层负载均衡在内的各类中间代理功能。Wedge 100B平台还引入了多项增强要素,其中包括提供经过优化的电源供应单元、更低成本的PCB设计、经过改进的制造设计以及更强大的CPU模块等等。这些交换机产品运行一款经过更新的OpenBMC版本。
OCP的Disaggregate: Networking大会由Facebook公司主办,选址于加利福尼亚州门洛帕克。此项会议主要面向对于开放及拆分网络解决方案抱有兴趣的工程师群体,旨在挖掘以拆分化方式更为高效、灵活且可扩展地创建硬件与软件这一重要机遇。
“开放计算网络项目对于Barefoot Networks与整个技术社区共享其两套Wedge 100B硬件设计方案的作法感到振奋,”OCP网络项目联度负责人Omar Baldonado表示。“我们期待着这些Wedge 100B设计方案能够带来更多创新性成果,也期待着其可编程交换机芯片能够为行业带来更多灵活性助力。”
“Barefoot Networks很高兴能够将其基于Tofino技术的Wedge 100B交换机设计方案与整个开放计算项目社区进行共享,”Barefoot Networks公司联合创始人兼CEO Martin Izzard指出。“利用Wedge 100B平台,OCP生态系统、网络拥有者以及架构师们能够以前所未有的方式充分把握全面分解的网络堆栈、深入转发层并借此构建起更适合自身需求的网络体系。”
作为公布于2016年6月的方案,Barefoot Networks公司的Tofino以太网交换机ASIC与Capilano软件开发环境(简称SDE)通过开放转发层消除了实现全面网络可编程能力的最后一项障碍,允许使用者对网络之上的可靠数据包传输进行细粒度控制。其首款Tofino芯片于2016年第四季度交付至客户手中,而该公司亦不断吸引到更多行业领导者加入其网络合作伙伴阵营。
上市时间
Barefoot公司的Tofino芯片已经于2016年第四季度开始发布样品。Wedge 100BF-32X与Wedge 100BF-65X系统目前已经允许用户通过Edgecore Networks进行订购。
好文章,需要你的鼓励
随着AI策略成熟,CIO开始重新考虑对公有云的依赖,私有云和本地环境重新受到关注。调查显示,67%的企业领导计划在未来12个月内将部分AI数据迁移至非云环境。主要原因包括成本可预测性、数据隐私保护、安全问题和云集成挑战。对于持续的AI工作负载,购买自有GPU比租用公有云更经济。私有云支出增长更快,预计2025年将有54%的组织在私有云上投入超过1000万美元。
沙特TachyHealth团队开发的32亿参数医疗AI模型Gazal-R1,通过创新的双阶段训练方法在医疗推理任务上超越了12倍大的模型,在MedQA等测试中取得87.1%的优异成绩,展现了精巧训练策略胜过规模扩张的重要启示,为资源有限的医疗AI研究提供了新路径。
本文深入分析了从传统AI发展到AGI过程中可能出现的智能爆发现象。基于AI专家共识的2040年AGI实现预期,文章探讨了七种主要发展路径,重点关注突破性的"登月路径"。智能爆发理论认为,智能可以像原子链式反应一样相互促进,快速产生大量新智能。文章预测2038-2039年可能发生智能爆发,随后在2040年实现AGI,但也指出了关于智能爆发的启动、控制和潜在风险等争议问题。
奥地利维也纳医科大学研究团队开发了RetFiner技术,通过让眼科AI模型同时学习OCT图像和医疗文字描述,显著提升了诊断准确率。该方法采用四种训练任务让AI模型建立图像与文字的深层联系,在三个主流眼科AI模型上实现了2-6个百分点的性能提升,为医学AI发展开辟了新方向。