5月18日,以“目标领域发展史及最新成果研究”为主题的信息与通信工程学院学术论文沙龙第四期在北京邮电大学西土城校区学生活动中心109室如期举行。北京飞搜科技算法工程师郭秋衫和姚永强作为主讲人进行讲解。
首先,主要由主讲人郭秋衫从CNN的历史进程中引出物体识别和人脸识别的概念,和目前的baseline,以及一些出名的测试数据集。接下来,详细地讲了物体识别,从一开始的随机森林回归方式,到RCNN -》 FPPNet -》 Fast-RCNN -》Faster RCNN等具体的介绍,介绍完two-stage的方法和性能后,转向one-stage方法,主要的方式有SSD, YOLOv1, v2, v3系列,最后,介绍RetinaNet,Mask-RCNN等更为先进的发展。one-stage算法从网络结构上看只是一个多分类的rpn网络,相当于faster rcnn的第一阶段。其预测结果是从feature map中anchor对应的特征中预测得到的对于two-stage的方式,主要是通过ROI层来适应不同尺度的图片输入,进一步精细化,因此更为准确。但是one-stage的方式由于只需要通过一次卷积获得特征,所以该方法的速度会很快。
接下来,大家简要看完论文后,选出两篇论文,由郭秋衫负责讲Faster-RCNN,由姚永强负责讲SSD。并附带讲解了一些FocalLoss,深度分析了其Loss公式的一些trick和设计的意义。
最后,在小组讨论交流后,各组提出自己不理解和想更深入了解的问题,此次沙龙圆满成功。
北京飞搜科技和信息与通信工程学院学术论文沙龙已经成功举办了四期,每一期都干货满满,让在场同学能够结合相关论文材料,切实接触了到前沿概念,收获颇丰。同时我们也能看到飞搜科技在人脸识别领域的积累以及传承。期待飞搜科技在接下来的学术论文沙龙中带来更多详实的知识!
北京飞搜科技(http://www.faceall.cn/)成立于2015年,公司专注于人工智能,计算机视觉和深度学习的研发,并把研究成果应用到智慧城市解决方案中,让城市更加安全,交通更加高效,生产更加智能、购物更加方便。公司力争在2020年底成为国内领先的智慧城市解决方案提供商。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。