一台路由器缓冲区稍微大一点,你知道会带来多大的益处吗?稍微小一点,你知道会带来多少的悲哀吗?
跑高速的时候,有时候两辆车轻微碰擦,就会带来几十公里的拥堵....这就是局部事故引发全局连锁反应。前年,沪嘉高速施工,拆除中心绿化带,取消硬路肩,将二车道改为三车道,你可别小看这一根车道,作用大了。
对于网络而言,数据包在网线上的时候,绝对安全,绝对是全速前进,最危险的就是到达转发设备内部,设备处理数据包带来的固有延迟导致数据包必须有机 会被缓冲,处理加速比一定要和缓冲区大小对应,此时增加缓冲区大小就类似于高速公路增加车道,作用大了去了。不管增加多少,缓冲区大小和线路带宽之间有个 公式,说实话,TCP为这个公式帮了大忙。
我们知道,UDP无状态无连接,丢了就丢了,谁也不知道,一切默默地。所以转发设备没法衡量到底设置多大的缓冲区。但是TCP可以帮忙。TCP有一 个RTT,即一个数据包一个来回所需要的时间,开启时间戳之后,这个测量是很精准的,因此,转发设备的缓冲区大小设置就和这个相关了。也就是说,缓冲区必 须能够保存一个TCP来回时间持续到达的数据包,能持续到达多少呢?这个由带宽决定。如果缓冲区大小小于这个值,一旦内部发生队列阻塞或者延迟,TCP就 会持续丢包。因此,越是高速的链路,缓冲区大小越是要大,网络带宽持续提高的今天,设备如何在单位时间缓冲存储如此巨量的数据,是一个大问题。固 然,TCP发现丢包会降速,那么UDP呢?
归根结底,转发设备缓冲区大小的决定因素就是内存访问效率,目前什么样的存储设备能满足要求啊?数据量巨量,直接就把昂贵的东西给pass了,不考虑并行性,什么才是神器?
好文章,需要你的鼓励
智能网卡(SmartNIC)技术自2013年AWS首次应用以来,虽然获得了VMware、英特尔、AMD和英伟达等巨头支持,但市场表现平平。分析师指出,目前主要客户仍局限于服务提供商。然而,随着AI技术蓬勃发展,情况正在改变。英伟达、红帽等厂商在AI云架构中推荐使用DPU,认为其可优化推理工作负载并提升资源效率,AI革命有望真正推动智能网卡技术普及。
法国Valeo公司联合巴黎索邦大学开发出DIP技术,让AI模型能像人类一样通过少量样本快速学习图像理解。该技术采用创新的"元学习"训练方式,无需人工标注即可显著提升模型在复杂场景下的分割性能,训练时间仅需9小时,在多个数据集上表现优异,为自动驾驶、医疗影像等领域应用提供了新可能。
YouTube为Premium会员推出AI生成的搜索轮播功能,可在购物和地点查询时显示相关视频序列。同时,此前仅限Premium用户的AI对话助手开始向美国普通用户开放,用户可通过"询问"按钮获得视频摘要和内容问答服务。该AI工具基于YouTube平台和网络信息运行,但准确性仍待观察。
微软等机构联合推出的RealPlay系统首次实现了用游戏控制指令生成现实视频的突破。该系统仅使用赛车游戏数据训练,却能控制现实中的汽车、自行车和行人运动,控制成功率达90%。RealPlay支持交互式视频生成,用户可像玩游戏般逐步指导视频发展,生成质量接近真实拍摄,为AI视频生成和未来游戏引擎开发开辟了新方向。