一台路由器缓冲区稍微大一点,你知道会带来多大的益处吗?稍微小一点,你知道会带来多少的悲哀吗?
跑高速的时候,有时候两辆车轻微碰擦,就会带来几十公里的拥堵....这就是局部事故引发全局连锁反应。前年,沪嘉高速施工,拆除中心绿化带,取消硬路肩,将二车道改为三车道,你可别小看这一根车道,作用大了。
对于网络而言,数据包在网线上的时候,绝对安全,绝对是全速前进,最危险的就是到达转发设备内部,设备处理数据包带来的固有延迟导致数据包必须有机 会被缓冲,处理加速比一定要和缓冲区大小对应,此时增加缓冲区大小就类似于高速公路增加车道,作用大了去了。不管增加多少,缓冲区大小和线路带宽之间有个 公式,说实话,TCP为这个公式帮了大忙。
我们知道,UDP无状态无连接,丢了就丢了,谁也不知道,一切默默地。所以转发设备没法衡量到底设置多大的缓冲区。但是TCP可以帮忙。TCP有一 个RTT,即一个数据包一个来回所需要的时间,开启时间戳之后,这个测量是很精准的,因此,转发设备的缓冲区大小设置就和这个相关了。也就是说,缓冲区必 须能够保存一个TCP来回时间持续到达的数据包,能持续到达多少呢?这个由带宽决定。如果缓冲区大小小于这个值,一旦内部发生队列阻塞或者延迟,TCP就 会持续丢包。因此,越是高速的链路,缓冲区大小越是要大,网络带宽持续提高的今天,设备如何在单位时间缓冲存储如此巨量的数据,是一个大问题。固 然,TCP发现丢包会降速,那么UDP呢?
归根结底,转发设备缓冲区大小的决定因素就是内存访问效率,目前什么样的存储设备能满足要求啊?数据量巨量,直接就把昂贵的东西给pass了,不考虑并行性,什么才是神器?
好文章,需要你的鼓励
机器人和自动化工具已成为云环境中最大的安全威胁,网络犯罪分子率先应用自动化决策来窃取凭证和执行恶意活动。自动化攻击显著缩短了攻击者驻留时间,从传统的数天减少到5分钟内即可完成数据泄露。随着大语言模型的发展,"黑客机器人"将变得更加先进。企业面临AI快速采用压力,但多数组织错误地关注模型本身而非基础设施安全。解决方案是将AI工作负载视为普通云工作负载,应用运行时安全最佳实践。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
面对心理健康专业人士短缺问题,谷歌、麦肯锡和加拿大重大挑战组织联合发布《心理健康与AI现场指南》,提出利用AI辅助任务分担模式。该指南构建了包含项目适应、人员选择、培训、分配、干预和完成六个阶段的任务分担模型,AI可在候选人筛选、培训定制、客户匹配、预约调度和治疗建议等环节发挥作用。该方法通过将部分治疗任务分配给经过培训的非专业人员,并运用AI进行管理支持,有望缓解治疗服务供需失衡问题。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。