比尔•盖茨对《连线》杂志说:如果他还是个少年,他就会做生物黑客了。“如果你想用伟大的方式改变世界,就从生物分子开始吧。”
——《想当厨子的生物学家是个好黑客》
百科:忆阻器
忆阻器(memristor)是一种被动电子元件,被认为是电路的第四种基本元件,仅次于电阻器、电容器及电感元件。忆阻器可以在关掉电源后,仍能“记忆”通过的电荷。两组的忆阻器更能产生与晶体管相同的功能,但更为细小。
而忆阻器的特性与一种与其全然无关的电路相似:神经元突触。神经元之间不是单线相连,而是多线连接成错综复杂的网络。每一个神经元总是和多个神经元 相连,将电信号从它的一端传到另一端。突触是神经元之间在功能上发生联系的部位,也是信息传递的关键部位。通过这些突触的信号越多,两个神经元之间的联系 就越强大。如同反复记忆这一行为,便是增加神经元中的突触,以形成联系更为紧密的神经元。
这一特性照亮了使用忆阻器制造神经突触芯片的前景,通常情况下脑电路控制逻辑神经元,忆阻器则控制它们之间的链接。然而,即使性能最优的忆阻器也无法利用CMOS(互补金属氧化物半导体)创建电路,因为使用了CMOS的忆阻器的状态很不稳定。
构造忆阻器神经网络
现在,来自Stony Brook大学和California Santa Barbara大学的研究团队似乎解决了这一问题。他们运用的是一种简单方式:系统性试错法研究。
忆阻器是由金属氧化物(常用二氧化钛)制成,因为电流会在氧原子消失的地方影响金属材料,进而影响其电流阻力。
在这种情况下,实验人员将氧化铝和二氧化钛结合形成了一个忆阻器。他们从“详尽探究二氧化钛组分及层厚度(5nm-100nm)的实验”开始,然后 逐步调整加上铝氧化物的厚度。二氧化钛层厚决定了在指定地点生成忆阻器的难易程度,同时氧化铝层影响了实际运行的稳定性与强度。
神经网络:人工智能的未来?
神经网络是由传统电路链接而成的网格(技术上称交叉开关),而忆阻器出现在每一个垂直线路交叉处——首先将金属氧化物层放置于这些位置,然后再通入电流。
研究人员训练神经网络识别V、N、Z三个字母,其囊括了存在单像素误差的可能。在经过一段时间的训练之后,忆阻器神经网络能够识别出所有三个字母, 同时更深入的训练可以进一步提升神经网络的表现。基础运算中的几个部分是由传统硬件完成的,而忆阻器则能处理最需要进行紧张计算的任务。
在这里,研究者生成的系统只涉及了12*12网格的忆阻器,因此能力是有限的。而来自奥地利Graz科技大学的Robert Legenstein认为:如果这个设计可以扩大至大型网络的大小,那么它将颠覆电脑运算的未来。
尽管存在很多挑战,但神经网络还是可以轻松超越传统计算机硬件,同时又避免了一大量能源的损耗。即使层厚为30nm,在一平方厘米中也能存放2500万个细胞,而其中每个细胞中带有1万个突触。想要为这一切提供能源支持,却只需要1瓦电。
好文章,需要你的鼓励
Atlassian总裁Anu Bharadwaj在Transform 2025大会上分享了公司AI智能体规模化的实践经验。她强调,成功部署AI智能体需要营造实验文化,而非仅依靠自上而下的指令。Atlassian通过Rovo Studio平台为各团队提供了构建定制化智能体的环境,创造心理安全的工作氛围,鼓励员工大胆尝试和迭代。公司客户通过该平台显著提升了工作效率,建筑行业客户将路线图创建时间缩短75%。
加州大学伯克利分校研究团队开发出革命性的R2R2R系统,仅需智能手机拍摄和一段演示视频,就能自动生成大量机器人训练数据。该系统绕过了传统昂贵的远程操作和复杂物理仿真,通过3D重建和智能轨迹生成技术,让机器人训练效率提升27倍,成本大幅降低,有望让高质量机器人技能变得像安装手机应用一样普及。
Zoom发布全新智能代理AI功能,旨在帮助用户在工作中节省时间。新的自定义AI助手插件可连接16多个第三方应用,无需离开Zoom界面。该AI助手现已支持在线购买并可集成到微软Teams和谷歌Meet等第三方会议平台。智能代理AI能够独立运行,自动执行任务、收集数据并达成目标。新功能包括日程管理、会议录制剪辑生成、文档创作辅助等,月费12美元。
腾讯优图实验室提出AnoGen方法,仅用3张异常图片就能训练出高精度工业检测AI。该方法通过扩散模型学习异常特征并生成大量逼真样本,在MVTec数据集上将检测精度提升5.8%,为解决工业异常检测中样本稀缺问题提供了突破性方案。