“NVIDIA初创企业GPU应用大赛”第一季于今年五月正式启动,得到了众多企业的踊跃参与。北京飞搜科技在本次赛事中表现优异,荣获优秀案例奖。
高清图像在交通录像取证,竞技场景细节还原等环境下,为专业人士提供着至关重要的细节信息,但在实际应用中,由于制作工艺和成本的考虑,很多场合都不会采用高分辨率、超分辨率的相机来进行图像信号的采集,因此,将低分辨率的图片还原成高分辨率图片就非常重要。
图像超分辨率(Super Resolution, SR)就是将低分辨率(Low Resolution, LR)的图像通过一定的算法转提升到高分辨率(High Resolution, HR)的技术。以往传统的图像超分辨率技术在图像还原方面差强人意,而且需要大量人力进行比对,效率很低。GPU和深度学习的大规模应用为整个行业带来了突破性的发展。目前,使用GPU来加速图片超分辨率重建已经成为业界内逐渐成熟的技术方案。
作为NVIDIA初创加速计划成员,北京飞搜科技有限公司(http://www.faceall.cn/)在计算机视觉领域拥有多项世界领先的研究成果,尤其是在人脸识别、目标追踪、目标检测等领域。飞搜科技团队采用NVIDIA Tesla P100对图像进行大规模的深度学习训练,实现了对视频监控图像中对低质量图片快速重建,且重建出的高清图像的人眼感官效果颇佳,远超传统的超分辨率方法。
飞搜科技在超分辨率领域实力雄厚,表现卓越,早在2018年的计算机视觉顶级会议CVPR(Computer Vision and Pattern Recognition)workshop NTIRE(New Trends in Image Restoration and Enhancement)竞赛中就已斩获优异成绩,而本次优秀案例奖的获得更是对飞搜团队的实力的认可。飞搜科技在超分辨率技术上的解决方案能够在诸如交通、博彩等需要进行模糊图像重建的行业得到广泛应用,而在在NVIDIA Tesla P100系列GPU的大力支持下,可以预见,飞搜科技将有实力把应对超分辨率的各项解决方案完善到“效率更高、速度更快、识别更准”的至臻境界之上,为深度学习在超分辨率上的应用起到更大的推动作用。
好文章,需要你的鼓励
AMD CIO的职能角色早已超越典型的CIO职务,他积极支持内部产品开发,一切交付其他部门的方案都要先经过他的体验和评判。
医学生在选择专业时,应当考虑到AI将如何改变医生的岗位形态(以及获得的薪酬待遇)。再结合专业培训所对应的大量时间投入和跨专业的高门槛,这一点就更显得至关重要。
我们拥有大量数据,有很多事情要做,然后出现了一种有趣的技术——生成式AI,给他们所有人带来的影响。这种影响是巨大的,我们在这个领域正在做着惊人的工作。