在刚过不不久的世界移动通信大会(MWC)上,中国电信联合英特尔等合作伙伴展示了基于RSD(整机柜设计)的NFVi(网络功能虚拟化基础设施)的Demo,引发业界关注。众所周知,相对于Facebook主导的OCP和BAT发起的天蝎项目,它们均针对互联网行业场景推广整机柜方案和融合开放交付,但对于电信运营商行业来说却没有类似的解决方案。
毫无疑问,云化部署也正在成为运营商们思考的转型方向,尤其对于网络来说,它们希望实现网元功能虚拟化、资源的动态化管理和调度,从而构建下一代电信网络基础设施。所以,在整机柜设计中,对虚拟网络的验证和管理成为重中之重。
中国电信广州研究院数据通信所SDN架构师欧亮
中国电信SDN架构师欧亮在接受媒体采访时指出,此次Demo主要展示了三部分,一是基于英特尔RSD的NFVi整机柜方案,二是运营级的NFV整体交付方案,三是综合多元化的典型电信虚拟化网元的展示。Demo的效果令人满意,包括基础设施构建、资源管理平台一体化交付能力、部署及扩展方案等内容,vBRAS、vIMS等能提供易部署、易扩展、易维护的高转发性能NFVi设施等。
此次Demo验证和评估了NFV的I层复杂度的问题,通过引入多厂家的方案,进行验证和评估证明了I层复杂度可以大幅降低。所以,这样的成果也吸引了业界的关注。
当然,进行整机柜的验证和评估也面临难度,欧亮指出:第一、分层解耦到很小的细粒度,导致整体的集成和验证工作量非常大;第二、目前的聚焦点大多在计算节点级,解耦以后离最终交付还是有一定的距离,尤其可靠性会降低;第三、假设颗粒度提升了,基于刀片式服务器、高密度的服务器,能不能做到跨厂商的部署,或者说防止新的落地烟囱的问题。
要解决以上三个问题,需要引入新机制和开放性的技术,解耦后要保证可靠性,运维、运营部署效率、集成效率不能降低,还要做到统一的基于机架的管理和部署。
好的消息是此次Demo环境不仅验证了英特尔RSD能在部署复杂度、承载能力、灵活性、可靠性以及高可用性等方面提供电信级参考方案,也是运营商实施云化部署,推进网络转型的重要尝试,为未来的商业化部署提供了参考。
英特尔公司数据中心事业部网络平台市场开拓总监杜唯扬
英特尔RSD是一个对计算、存储、网络资源解耦、资源池化及重构的逻辑架构,通过基于行业标准、针对动态池化资源分配及释放管理而扩展的API管理接口,来有效提高资源池利用效率的能力。它也是首个对计算、存储和网络功能进行解耦合与动态管理的行业标准,从而让数据中心资产实现更有效的超大规模部署和利用。英特尔公司数据中心事业部网络平台市场开拓总监杜唯扬指出,英特尔RSD也得到了欧洲、日本、澳大利亚的多家运营商的案例验证,并得到华为、戴尔、爱立信、HPE、联想、浪潮、H3C、广达等厂商的支持。
杜唯扬强调,英特尔RSD提供了一个平台,让众多厂家进行融合的转型,从而对资源池进行灵活高效的调配,这无论为电信运营商还是其他行业企业实施云化部署提供了坚实基础,目前也逐渐吸引越来越多的厂商加入这一架构设计中来。
据介绍,此次中国电信和英特尔联合展示的整机柜内产品由多个厂商提供。其中底层是由浪潮提供的基于英特尔RSD参考设计的 InCloudRack 融合架构整机柜服务器产品,虚拟化层则分别采用浪潮InCloud Sphere和Redhat OSP 8.0的构建云,虚拟网元层面分别是由H3C提供的vBRAS应用以及由诺基亚提供的vIMS应用。利用Redfish API,EPA,AMI PODM等管理工具与协议标准,英特尔RSD可以统一高效地管理来自多厂商的设备,从而简化和加速NFVi的部署。
在方案中基于vBRAS的宽带用户接入与体验评估中,vBRAS作为虚拟化网元部署在RSD的资源池。中国电信通过仪表来模拟和监测宽带用户观看4k电视节目的真实体验,测试vBRAS在承载大会话、高容量业务时的实际表现。结合英特尔DPDK等软件优化方式,测试结果表明,影响最终用户体验的主观平均分(Mean Opinion Score,MOS)以及画面卡顿率都达到预期目标。
欧亮介绍,现在已经有很多厂商要求参加中国电信RSD技术方案后续的验证测试,这让他们很受鼓舞,他相信,随着越来越多参与方加入及进行的大量实践和验证工作,基于RSD的整机柜商业化部署进程会加快。
好文章,需要你的鼓励
在2025年KubeCon/CloudNativeCon北美大会上,云原生开发社区正努力超越AI炒作,理性应对人工智能带来的风险与机遇。随着开发者和运营人员广泛使用AI工具构建AI驱动的应用功能,平台工程迎来复兴。CNCF推出Kubernetes AI认证合规程序,为AI工作负载在Kubernetes上的部署设定开放标准。会议展示了网络基础设施层优化、AI辅助开发安全性提升以及AI SRE改善可观测性工作流等创新成果。
香港大学研究团队提出LightReasoner框架,通过让小型"业余"模型与大型"专家"模型对比,识别关键推理步骤并转化为训练信号。该方法在数学推理任务上实现28.1%性能提升,同时将训练时间、样本需求和词元使用量分别减少90%、80%和99%,完全无需人工标注。研究颠覆了传统训练思路,证明通过模型间行为差异可以实现高效的自监督学习,为资源受限环境下的AI能力提升提供了新路径。
DeepL作为欧洲AI领域的代表企业,正将业务拓展至翻译之外,推出面向企业的AI代理DeepL Agent。CEO库蒂洛夫斯基认为,虽然在日常翻译场景面临更多竞争,但在关键业务级别的企业翻译需求中,DeepL凭借高精度、质量控制和合规性仍具优势。他对欧盟AI法案表示担忧,认为过度监管可能阻碍创新,使欧洲在全球AI竞争中落后。
马里兰大学研究团队开发了MONKEY适配器,一种无需额外训练的AI绘画控制技术。该方法通过"两步走"策略解决了个性化AI绘画中主体保真与背景控制难以兼得的问题:先让AI识别主体区域生成"透明胶片",再在第二次生成中让主体区域听从参考图片、背景区域听从文字描述。实验证明该方法在保持主体特征和响应文字要求两方面均表现出色,为AI绘画的精细化控制提供了新思路。