根据调查发现,云已经从移动的“影子”IT转变为企业IT管理。如今,大多数云支出决策,率先把云服务的组织的CIO和行政整合进来。
这份调查来自一家名为RightScale企业级云管理公司,其最新的云调查显示在2015年中企业正越来越多地实施混合云策略,包括公共云和私有云。同时,RightScale还发现,越来越多的企业工作负载目前部署在私有云,而公有云的使用也越来越广泛,并有望吸引新的工作负载,以更快的速度。
“企业采用云计算的浪潮已经从阴影IT转向为首的中央IT团队的战略收养,说:”迈克尔·克兰德尔,RightScale的CEO,在一份声明中。 “随着企业IT变得更加开放,公共云和更舒适的云安全,现在是处于强势地位,为内部客户和驱动采用云计算着经纪人的云服务。在未来的一年组织希望把更多的 工作负载向云与公共云的工作负载增长速度比私有云快。“
RightScale的在2015年1月进行的调查在这里面,RightScale的质疑跨越他们采用云计算的组织具有广泛代表性的部分专业技术人员。 930受访者的范围从技术高管管理人员和从业人员代表在许多行业不同规模的企业。
这份调查包括以下具体项目:
混合云是首选策略:接受调查的组织93%正在运行的应用程序或基础设施作为一种服务(IaaS)的实验。与此同时,企业的82%有一个混合云战略。 这是从74%在2014年公共云所使用的多个组织,88%,而私有云,63%,运行更多的工作负载。企业这一说,只有13%的运行公共云超过1000个虚 拟机(VM),而组织22%的私有云上运行超过1000的虚拟机。换言之,私有云用户倾向于使用其云彩更多。
软件即服务(SaaS):虽然企业的68%运行的SaaS应用程序,不到五分正在运行的应用程序组合在云中。与此同时,企业的 55%报告说,他们现有的应用程序组合的显著部分已建成云友好的架构。总之,我们可以期望看到软件作为服务(SaaS)的继续增长。
DevOps的升高:总体的DevOps采用已经上升到66%,而企业达到71%。最流行的DevOps方案,厨师和木偶,由28和24%的企业分别使用。至于集装箱,码头工人,在其第一年,已经使用的企业13%的公司计划部署的高达35%。
IT管理需要云服务“缰绳:企业62%的报告说,中央IT使得广大的云支出决策。 43%的人都提供了一个自助服务门户访问云服务,另有41%的策划或开发一个门户网站。
亚马逊网络服务(AWS)占主导地位的公共云:AWS采用是57%,而Azure的IaaS的是第二个,占12%与6%的在 2014年在企业,天青的自然家园,微软的云产品缩小了差距有19%采用比AWS与50%。谷歌的IaaS产品展示企业间的快速增长,从4%到2015年 增加至2014年的9%。
私有云2015:受访者在采用私有云技术的最小的变化,从2014年的VMware vSphere继续领导与企业的受访者有53%报告说,他们把它作为一个私有云。企业使用OpenStack的显示了2015年的最大增幅,3%的速度增 长。微软的新的Azure包提供显示在其第一年强劲的使用,企业使用的11%。
根据这份调查显示的结论是,私有云用户往往运行更多的虚拟机,其是混合云的真正增长因素,而有些厂商开始把私有云引入到公共云的混合云模型中。此外,尽管目前vSphere支配了私有云架构,但OpenStack和基于Azure的部署方式有很大的成长空间,同时其可以降低在公共云和vSphere的投资成本。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。