企业网络软件更新滞后是由于采用新技术有很多障碍。好消息是,这些挑战都不是很难克服的。
在采用新的软件网络技术方面,相比起电信服务供应商,一般企业速度要慢很多。
事实上,根据Doyle研究表明,企业占软件定义网络(SDN)和网络虚拟化支出总费用少于40%。
企业采用新技术的障碍包括缺乏明确的业务驱动力,以及不知道哪家的技术策略值得信任的感知风险和混乱。
网络软件由软件定义网络(SDN)和虚拟网络因素两者组成,包括4-7层提供独特价值的设备,且分别由底层网络硬件商出售。
事实上,网络软件有各种用途,包括用于数据中心网络;路由选择;交换;广域网优化;应用交付控制(ADC);网络监控和管理,以及网络安全。几乎4-7层设备的每个供应商都有一个虚拟设备选项。
很多大型企业正在评估网络软件的部署,但是对于技术成熟性存在恐惧,不确定和怀疑。本质上,他们想要确保选择了“正确”的架构,并且和一个值得信赖的合作伙伴来发展其网络。
不像云服务提供商,他们普遍采用绿场部署新的软件,也就是在以前不存在网络的地方部署。而企业必须考虑到新技术对于他们传统网络和目前正在使用的数以百计的应用程序的影响。
以下是可以解决目前在企业部署网络软件所存在障碍的方法:
• 用商业案例证明:提供已存在的,公共的网络软件部署案例,以清晰地展示商业利益和挑战。
• 传统网络和应用程序集成:行业内需要公开讨论并解决在一个传统的网络环境中,管理新的软件定义网络(SDN)/虚拟网络元素所带来的挑战。
• 提供使用案例:厂家总是急于吹嘘网络软件,而常常错过介绍具体而又基本的使用案例。厂家应该告知客户其软件可带来的利益,还有相对容易实现的优势。
• 解决多厂商互操作性:所有的大企业都有大量的网络和安全供应商。网络软件部署必须证明,可以和领先的供应商的设备互操作,如思科、VMware、F5等。
也许部署网络软件最大的障碍是不知道如何从广泛的技术选项中进行选择。首先,有几个要考虑的关键技术:
• VMware NSX: NSX是一种数据中心的网络软件叠加技术。它最初使用是由安全需求(微分段)所驱动。VMware表示,其拥有超过250个NSX付费用户。
• 思科的应用策略基础架构控制器(APIC):应用策略基础架构控制器(APIC)为数据中心网络提供自动配置和管理。在其早期版本中,思科表示其拥有超过200个应用策略基础架构控制器(APIC)客户。
• OpenDayLight: ODL(OpenDayLight)是一个网络可编程的开放控制平台,可确保软件中网络服务的广泛使用。ODL(OpenDayLight)可以作为开源软件部署,也可以从很多网络提供商获取。
• 网络软件独立供应商(ISVs): 目前有不少网络软件供应商可提供各种功能产品,包括白盒交换机控制,路由选择,广域网优化,应用交付控制(ADC),以及网络监控,所以IT经理有不少选择。目前已经拥有一些大客户的网络软件独立供应商(ISVs)也有不少,包括Adara, Big Switch, 博科,Cumulus, Nuage, Pluribus, Plumgrid, Sideband和Viptela。
尽管现在是企业网络软件的发展早期,但是还是有一些大型机构已经成功地部署了网络软件,无论是在绿场还是传统环境中。例如,金融服务公司Lucera已经在它的数据中心和广域网部署了软件定义网络(SDN).
2014年10月的开放网络用户组(ONUG)会议上,工程公司MWH Global解释了它将如何用虚拟广域网替代它大部分的多协议标签交换(MPLS)网络。与此同时,一些其他大型企业讨论了其数据中心和局域网内当前和计划的网络软件部署。
最近的新闻显示,在OpenStack环境中背后有着很大的网络软件部署潜力。在未来几年,OpenStack环境中相对弱的网络功能将会是网络软件部署一个有力的驱动。部署了OpenStack的IT经理可能会向商用网络软件供应商投去橄榄枝,以得到他们所需要的虚拟网络功能。
好文章,需要你的鼓励
随着AI广泛应用推动数据中心建设热潮,运营商面临可持续发展挑战。2024年底美国已建成或批准1240个数据中心,能耗激增引发争议。除能源问题外,服务器和GPU更新换代产生的电子废物同样严重。通过采用模块化可修复系统、AI驱动资产跟踪、标准化数据清理技术以及与认证ITAD合作伙伴合作,数据中心可实现循环经济模式,在确保数据安全的同时减少环境影响。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
超大规模云数据中心是数字经济的支柱,2026年将继续保持核心地位。AWS、微软、谷歌、Meta、甲骨文和阿里巴巴等主要运营商正积极扩张以满足AI和云服务需求激增,预计2026年资本支出将超过6000亿美元。然而增长受到电力供应、设备交付和当地阻力制约。截至2025年末,全球运营中的超大规模数据中心达1297个,总容量预计在12个季度内翻倍。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。