康普RUCKUS大中华区总监 程俊邦
成功的企业从不会停止适应不断变化的商业环境。就像经验丰富的球队队长能够洞察赛场,从而发现机会、权衡风险一样,主动出击的企业才能蓬勃发展。无论是在体育界还是在商界,在等待最佳行进路线逐渐明朗的过程中,原地踏步、消极被动都将导致自己被超越。随着一系列重要的企业技术的发展,2024 年很可能会成为企业在市场竞争中脱颖而出的关键一年。
今年将有三件大事发生,其各有各的风险、益处和解决方案。虽然这并不是一份详尽的清单,但其中包括了将在 2024 年以某种方式影响大多数企业的技术,而且一些企业可能已经在采用了。
Wi-Fi 7 添加了多链路操作(MLO)功能,使接入点(AP)能够同时驱动多个频段和信道,因此同一接入点可同时提供 2.4 GHz、5 GHz和 6 GHz 的数据流,从而使容量激增,大大降低延迟。此外,MLO 还能在终端和 Wi-Fi® AP 之间提供更可靠的连接。因此,2024 年,企业将更深入地审视自身用例,并认识到曾经被认为无法通过 Wi-Fi 实现的用例终于成为可能。
此外,6.0 GHz 频段也被未授权的蜂窝网络应用所共享。这为融合网络中一些令人兴奋的应用打开了大门:
对于希望在人员和设备连接方式上实现高敏捷性的企业来说,2024 年将在如何并行驱动多个网络和协议方面取得重要进展,通过专用网络优化连接组合,满足企业的特定需求。
以上就是 2024 年对于企业的利好消息。这些技术将为未来十年或二十年的发展奠定基础,而且它们都将在同一时间成为主流技术。当然,这种增长也伴随着“成长的烦恼”,这些烦恼也可归结为横跨这些技术的三大挑战:
这些相互关联的挑战中,每一项都像是需要攀登的陡峭山坡,但其并非无法逾越。即使企业开始感受到这些挑战,他们也有创新的解决方案可供选择。那些善于利用新技术的企业将在未来几年中处于有利地位,并最大限度地减少潜在不利因素。对于渴望充满信心地拥抱这些进步的企业,以下是其可用的三大关键资源:

可用于训练AI系统的算力(数据由 OpenAI提供)和随着时间推移的相应成本(数据由 ARK Invest提供)示例
AI驱动的网络管理已经变得足够强大,能够以更少的 IT 参与和更精简的预算来保持融合型企业网络的平稳运行,而且根据 ARK Invest 的预测,训练专用 GPT-3 AI模型的前期成本
将骤降至几年前所需投资的 0.0065%。在企业构建更加融合、灵活和强大的网络时,AI也能帮助确保 SLA 合规性,从而消除采用AI的大部分风险。
这些优势以前只能在由不同供应商的安全硬件和软件组成的分散、不可靠的生态系统中获得。经过 Matter 和 Thread 认证的设备将最终消除阻碍物联网更广泛应用的挑战和风险。
最后,对于那些受限于 IT 资源和时间,而非设计、构建、管理和支持融合网络所需的资金的企业来说,也有供应商可提供一整套“托管服务”供其选择,以满足其网络需求。
这三种解决方案的一个共同点是,它们都致力于为企业减轻与最先进的融合网络相关的复杂性。AI提供了最受欢迎的优势,即网络保障,超越了普通的监控,使精干的 IT 团队能够处理价值更高的项目。同样,为支持互操作性、安全性和简便性而构建的 Matter 和 Thread 协议所提供的定义明确的连接框架,在加速物联网应用在许多行业垂直领域的普及方面发挥着关键作用。最后,NaaS 模式可将整体体验简化为企业与网络之间简单的交钥匙关系。
2024 年的关键发展将产生远超未来一年的深远影响。如此多令人兴奋的技术进入主流,很可能为未来几十年的发展奠定基础。对于有意向接受这些技术的企业来说,如果能将AI、物联网和 NaaS 支持巧妙地结合,2024 年将成为一个非常美好的开始。
好文章,需要你的鼓励
微软近年来频繁出现技术故障和服务中断,从Windows更新删除用户文件到Azure云服务因配置错误而崩溃,质量控制问题愈发突出。2014年公司大幅裁减测试团队后,采用敏捷开发模式替代传统测试方法,但结果并不理想。虽然Windows生态系统庞大复杂,某些问题在所难免,但Azure作为微软核心云服务,反复因配置变更导致客户服务中断,已不仅仅是质量控制问题,更是对公司技术能力的质疑。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
当团队准备部署大语言模型时,面临开源与闭源的选择。专家讨论显示,美国在开源AI领域相对落后,而中国有更多开源模型。开源系统建立在信任基础上,需要开放数据、模型架构和参数。然而,即使是被称为"开源"的DeepSeek也并非完全开源。企业客户往往倾向于闭源系统,但开源权重模型仍能提供基础设施选择自由。AI主权成为国家安全考量,各国希望控制本地化AI发展命运。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。