Uptime的数据显示,2022年,有25%的数据中心受访者谈到最近的一次停机中断,造成了高达100万美元的损失,其中,“人为错误”占数据中心停机原因的66%-80%。这实际上就要给数据中心运维人员敲响警钟,伴随着400G/800G光模块的普及,数据中心对光纤的部署会越发密集:例如针对 MPO 到 LC 的一对多关系,大量基于物理的网络连接正需要快速的问题排查办法,一旦配线架上的光纤被不慎碰出,这样的人为失误,很可能导致客户关键应用的中断。
对此,【网事数说】与你一起从康普所经历的案例入手,帮助数据中心减少人为错误引发的停机灾难:
收看康普公司独家定制的【网事数说】节目,有数据,有干货,有经验。
过去人们常说“要想富,先修路”。在如今这个数字化浪潮推动的时代,建设优质的网络连接,就如同发展数字经济的致富之路。康普公司的全球团队专注于综合布线领域的创新与发展40年,为全球75% 的人口提供通信服务,帮助设计、构建并管理世界各地有线和无线网络。康普希望将自身的经验与广大的从业人员和关注者们进行分享,期待通过【网事数说】栏目,为您打开一扇洞悉网络价值的窗口,解读那些冰冷数据背后传递的含义,分享网络布线案例供您参考。
关注@康普综合布线 公众号
更多网络资讯与您分享
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。