慧与的首席执行官Antonio Neri表示:“等到与Juniper的交易完成,我们将拥有另一项业务:110 亿美元的收入。它将占公司收入的三分之一以上,可能会占公司利润的50%。”
首席执行官Antonio Neri表示,由于斥资140亿美元收购Juniper Networks,以及新的Aruba networking 全球营销活动,网络正在成为慧与的核心,慧与正在努力从竞争对手思科那里获取更多的市场份额。
Neri今天在亚特兰大举行的2024 XChange Best of Breed 会议上表示:“我们正在成为一家以网络为核心的公司。思科可能已经忘了这一点。”“我认为这是个大机会,最终会在网络层面为客户提供更加现代化、由人工智能驱动的体验。”
Neri表示,慧与对Juniper的大手笔收购可能“几周后”就会完成,这将大大提高这家市值300亿美元的公司的销售额和利润。
慧与的首席执行官表示:“等到与Juniper的交易完成,我们将拥有另一项业务:110 亿美元的收入。它将占公司收入的三分之一以上,可能会占公司利润的50%。”
Antonio Neri:Juniper和慧与的产品之间“没有重叠”
Neri表示,慧与和Juniper的产品组合并不重叠,这对其在全球网络领域与思科争夺市场份额是个好兆头。
Neri表示:“Juniper获得了规模(以及)更大的销售队伍。显然,它还能服务于所有客户群。人们有时会有点困惑,(认为)会有重叠。实际上,并没有重叠。”
例如,他表示惠与在服务提供商领域“从未在网络层面做过任何事情”。
他表示:“我们在这个领域没有路由业务。显然,(与Juniper合作)对我们来说是一件好事。”
在某些网络市场或客户方面,惠与传统上并不热衷于校园和分支机构领域,而这正是Juniper的强项。
Neri表示:“你想想,在校园和分支机构领域,惠与凭借HPE-Aruba Networking建立了令人惊叹的业务,但真正的业务是在企业的高端领域,而且更多是针对思科。你看看Juniper Mist(AI),他们打造的解决方案非常出色,更多是人工智能驱动的。”
他表示:“所以,不要把惠与和Juniper对立起来看待。而是惠与和 Juniper一起,要与市场上思科的多种架构竞争。”
慧与擅长不安于现状
对于Juniper合作伙伴,Neri表示,渠道合作伙伴将能够销售“更大的产品组合,比以往想象的更大。”
他表示:“你想想到了2024年底或者2025年初,这起收购完成并融入业务,它将支持所有类型的客户——从电信和云服务提供商,到各种规模的企业,从园区和分支机构到数据中心交换,再到核心数据中心。”“显然,园区和分支机构解决方案还包括 Wi-Fi、软件、防火墙、网络和安全。”
Redapt是一家总部位于德克萨斯州奥斯汀的解决方案提供商,该公司的执行副总裁Paul Shaffer表示,收购Juniper是慧与在竞争中扩大市场份额的一项大胆举措。
Shaffer表示:“从网络的角度来看,收购Juniper非常好,因为我们也有相当强大的Juniper业务。如果他们能把Juniper业务整合到他们的数据中心基础设施业务中,那么效果会非常好。”
Shaffer表示,多年来,慧与在Neri的领导下进行了一些科技行业“最好的战略收购”。
Shaffer表示:“慧与擅长不安于现状。Neri 进行了一些伟大的收购,你在Aruba上就能看到这一点。他进行了一些非常棒的收购,在一些产品线或解决方案可能存在空白的地方增加了产品线。”
他表示:“在科技世界里,你不能停滞不前。”“你必须进行这类严肃的投资,将赌注押在上面。我为惠与和Juniper感到兴奋。”
Neri则表示,他看好惠与和Juniper合并后在市场竞争中的优势。
Neri表示:“这是惠普和惠与历史上第一次全面拥有知识产权——从芯片到基础设施到操作系统,再到软件服务和安全,以提供现代化的边缘到云网络结构。”
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。