美国网络基础设施制造商Extreme Networks发布业绩报告,营业额出现两位数的反弹,但公司股价在周三第四季度财报发布后后几乎跌了五成。这是在提醒大家,科技公司如业绩未能达到华尔街的预期就存在危险。
在截至6月30日为止的该季度里,Extreme Networks的收入增长了56%,达2.783亿美元,远远高于去年同期1.789亿美元的收入,但低于分析师预期的2.7922亿美元。
加上Extreme公布的亏损为560万美元,虽然比上一季度亏损的1300万美元有改善,但去年同期则录得利润1320万美元。
首席执行官Ed Meyercord则高调表示自动化校园业务方面的出货量“稳定“以及软件销售及相关服务录得创纪录的1100万美元季度业绩。但他未能用同样热情洋溢的词汇来谈论从博科收购的数据中心网络产品的业绩。
他提到下一代SLX平台称 “高端数据中心胜出”,其中包括签了20个100万美元以上的交易,是上一季度的两倍,但他补充表示,“离我们的内部预期略逊一筹。”
Meyercord在电话会议上表示,“我们对本季度最后一周数据中心订单短缺了1000万美元感到惊讶。很明显,我们在渠道的处理上存在不足。为了解决这个问题,我们改组了领导层,我们还调低了2019财年第一季度第二季度的季度预期收入约5000万美元。
他称,路由器产品组合将“在2018年年底全面完成,而且我们将以交换端口价提供路由器端口规模。”
在整个2018财政年度,Extreme的销售额为9.83亿美元,亏损4,680万美元。相比之下,上一个财政年度的销售额为6.07亿美元,亏损174万美元。
Extreme公司提供给投资者的幻灯片([PDF] http://investor.extremenetworks.com/static-files/cc02a93a- 9226-40dc-9dab-41d6fa2e8267 )显示,Extreme的库存积压在增加,本季度的积压为6390万美元,而上一季度的积压为4740万美元 -- 本季度的资本支出为1840万美元,而去年同期的支出为260万美元。花更多钱,获利更多,但赚钱少了。
Meyercord表示:
我们正在精简我们的产品组合,并在积极提出减少与旧产品相关的SKU以及之前宣布的寿命终止产品的计划。我们对渠道中的产品组合进行了评估,我们确认了提高灵活性、提高效率和提高利润率的时机。
首席财务官Drew Davies.表示,公司在2018年财政年度末账面上的债务总额减去贷款费用为1.98亿美元,“归因于与Campus Fabric收购相关的借款以及我们在2018年5月1日结束的新定期贷款和循环信贷额”。
Extreme预计,收入大致会减少以及亏损将在不久的将来深化,预计2019财年第一季度的亏损将在690万美元至1460万美元之间。
Extreme Networks此前曾于去年收购了Avaya的网络商务和Brocade的数据中心业务。Davies在其评论文章(http://investor.extremenetworks.com/static-files/2e7a7520-72e5-46cd-bfab-b1a9b6cb5df0 PDF,其实更多的是个声明而不是评论文章)将当前的困境归结为“由我们的校园结构和数据中心导致的收购财会调整“。
Extreme的股价在在公布业绩时从9美元左右跌至5.89美元,本文完稿时上涨至6.24美元。
好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。