Avaya和Extreme Networks日前证实了Avaya将以“大约1亿美元”出售旗下网络业务的消息。
两家公司三月时就有意交涉该交易,但因为当时Avaya还在找其他买家投标,因此,确认Extreme为最后买家花掉了一段时间。
两家公司日前已经发了声明说交易已经完成,既是说一旦等到律师事务、签字和盖章后就完成了,预期交易结束日期为7月1日。
Avaya卖掉网络业务是因为需要现金,Avaya重组债务时举步维艰,所得现金可以帮助其重组债务,而且,Avaya也希望专注统一通信及之类的业务。另一方面,Extreme则想与诸如Cisco和HPE一类的公司平起平坐,Extreme所以还收购了博科的数据中心网络资产,旨在提供涵盖数据中心核心、LAN、校园网络、WAN和安全性的产品组合。
Extreme认为该交易是一个突破口,因为尽管“Avaya Networking并未提供有关业务审核过的财务报告”, Extreme相信 该业务的“年收入超过2亿美元”。 Extreme还表示可以将花在 Brocade的5500万美元转化为2.3亿美元的年收入,以及可以将收购斑马网络的5500亿美元转化1.15亿美元的年收入。如果这些数字是对的,那么明年这个时候Extreme的收入将新添5.45亿美元,外加2016年报出的5.28亿美元的收入。
加在一起也就是十多亿美元,Extreme的规模仍很难与HPE和Cisco攀比,甚至和Juniper网络都没法比。但Extreme落在Arista后面不是太远,业界人士通常认为在开企业网络购物清单时Arista是值得考虑的。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。