2015年华山医院信息中心遇难题
一天。医院挂号大厅的自助设备悄悄罢工了,挂号处又排起了长龙。信息中心的同事忙得午饭也没顾得上吃,一个一个可能性排查,下午三点了,还是没有头绪。“大概是IP地址冲突了吧。具体是哪几个冲突了,一个个慢慢查吧”经验丰富的葛工摇摇头。
又一天。药房的打印机不工作了,医生的处方打印不出来,药房窗口人满为患,虽然大家都在低头刷手机,但是信息中心的同事还是感到巨大的压力:“肯定是IP地址又冲突了,这么多终端,什么时候能排查完啊,哎!“
数字化医院的建设,已经开始了有几年了。除了原先的台式机以外,各种平板电脑,护士手持PDA,医生手持IPDA、打印机、评价器、各种终端纷纷上线。信息化极大地简化了工作的流程,效率的提升更是不在话下。
但是“IP地址冲突“这个新名词也开始频繁在华山医院信息中心同事口中出现。作为终端联入互联网的”准入证“,医院所采用的静态IP地址管理常会出现“IP地址冲突“问题,一排查就要一天。造成冲突的主要原因一个是网络管理员人工配置错误(这在终端数量多的情况下经常出现),另外一个是终端用户自己私改IP地址。
千帆过尽终遇良策
为了解决IP地址冲突的问题,华山医院也尝试过比较常见的IP地址管理办法。例如:
人工在excel表上记录IP地址,再进行分配。但是终端数量多,人工的记录经常出现误差,信息失真严重,典型的高投入低回报,冲突问题不能解决。。
桌管软件要求终端必须具有windows操作系统,因自助终端、显示屏等终端无法使用此软件,IP地址管理不全面,冲突问题继续发生。
IP管理软件记录了全网IP使用情况,但还是需要人工分配和配置,容易出错还麻烦。另外无法禁止医生护士私设IP。
2016年,一个偶然的机会,华山医院了解到锐捷新出了一款网络核心服务器RG-DDI,该产品集合DNS和DHCP功能,最重要的是IP地址管理功能,能把各类IP地址智能管理起来,是名副其实的“IP管理司令“。
RG-DDI怎么管IP地址?
首先,该平台可以对全网的IP进行监控,使用状况一目了然。如下图:
白色空格代表是空闲IP地址,可以被使用。浅蓝色代表是静态配置的IP,深蓝色代表动态分配且固定的IP。如果出现IP冲突,地址框会变成红色,根据冲突IP的具体接入位置信息,管理员可以及时发现并解决问题。
其次,新的终端入网在地址管理平台上能够自动发现:
新终端的MAC地址、主机名、终端类型、所接入的交换机端口等信息都可以呈现出来。管理员只需要点击授权按钮,选择绑定类型(IP+MAC/IP+MAC+接入设备等7种绑定类型),单击IP框之后系统自动推荐可用IP。简单一步就可以实现终端的IP分配和准入控制功能。取代了以前由人工静态配置IP、在交换机上做绑定的工作。
综上,RG-DDI通过自动化的地址分配取代人工操作减少误差,并配合接入交换机禁止终端用户私设IP地址,从根本上解决了IP地址冲突产生的问题。同时,DDI的部署直接旁挂在核心交换机上,不会对现有的网络结构造成影响。
2016年,科技创新带来业务规范
“应用DDI需要把原有的静态IP地址都换成动态的IP地址,其实这一部分工作量不小,一开始我们也是犹豫过的,但是IP地址冲突的问题老是解决不了也不行。另外一方面,静态IP地址早就满足不了业务的需求,转化成动态IP地址也是早晚的事,那就改吧!”华山医院信息中心的戴老师坦言”以前我们的终端只有1000多台,且大多是台式机,笔记本也少管理方式比较简单不成体系。现在有3000多台终端,各种各样都有,应用DDI以后,我们把这所有的终端都被管理和记录起来了,而且机器智能分配它们的IP地址,使用状况一目了然,我们的IT管理系统化、规范化了。也算是一个意外收获啊!最重要的是IP地址不冲突,业务不再突然中断了,各个环节都能正常运行,患者在我们医院就医更方便了。“
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。