5G的出现,势必会带来对更高移动网络连接速度和更大数据容量的需求。为了应对这一提升性能的需求,就需要新的基站技术。
基站是所有移动网络必须克服的一个瓶颈。也正是这个瓶颈,将目前的4G网络限制在50Mbps的平均峰值数据速度内,并阻碍它实现真正的实时传输。
相反,5G或许能实现实时无线通信,并实现10Gbps的最大数据速率。
德国弗莱堡的弗劳恩霍夫应用固体物理研究所(Fraunhofer Institute for Applied Solid State Physics)声称拥有“扩大这一瓶颈的技巧”。
弗劳恩霍夫应用固体物理研究所研究人员目前正在开发新型功率放大器,能比当前4G技术以更快的速度发送更大量的数据。
这些新型功率放大器能利用高达6GHz的额外无线频率;相比之下,LTE则限定在2.7GHz。
但是,尽管这些高频率能实现更快的数据传输,同时却也更难有效地提供更高功率。
因此,劳恩霍夫IAF的科学家们开始利用氮化镓(GaN)构建更适合于更高5G频率的射频电源发送器。
劳恩霍夫IAF的Rüdiger Quay博士解释道:“由于氮化镓特殊的晶体结构,同样的电压可以在更高的频率中实现,从而带来更高的功率和更好的效率性能。”
加上能为用户提供高精确度数据服务的新型电子转向天线,5G网络能处理比当前高达200倍的数据传输量,而无需大幅度增加功率消耗。
好文章,需要你的鼓励
AMD CIO的职能角色早已超越典型的CIO职务,他积极支持内部产品开发,一切交付其他部门的方案都要先经过他的体验和评判。
医学生在选择专业时,应当考虑到AI将如何改变医生的岗位形态(以及获得的薪酬待遇)。再结合专业培训所对应的大量时间投入和跨专业的高门槛,这一点就更显得至关重要。
我们拥有大量数据,有很多事情要做,然后出现了一种有趣的技术——生成式AI,给他们所有人带来的影响。这种影响是巨大的,我们在这个领域正在做着惊人的工作。