5G的出现,势必会带来对更高移动网络连接速度和更大数据容量的需求。为了应对这一提升性能的需求,就需要新的基站技术。
基站是所有移动网络必须克服的一个瓶颈。也正是这个瓶颈,将目前的4G网络限制在50Mbps的平均峰值数据速度内,并阻碍它实现真正的实时传输。
相反,5G或许能实现实时无线通信,并实现10Gbps的最大数据速率。
德国弗莱堡的弗劳恩霍夫应用固体物理研究所(Fraunhofer Institute for Applied Solid State Physics)声称拥有“扩大这一瓶颈的技巧”。
弗劳恩霍夫应用固体物理研究所研究人员目前正在开发新型功率放大器,能比当前4G技术以更快的速度发送更大量的数据。
这些新型功率放大器能利用高达6GHz的额外无线频率;相比之下,LTE则限定在2.7GHz。
但是,尽管这些高频率能实现更快的数据传输,同时却也更难有效地提供更高功率。
因此,劳恩霍夫IAF的科学家们开始利用氮化镓(GaN)构建更适合于更高5G频率的射频电源发送器。
劳恩霍夫IAF的Rüdiger Quay博士解释道:“由于氮化镓特殊的晶体结构,同样的电压可以在更高的频率中实现,从而带来更高的功率和更好的效率性能。”
加上能为用户提供高精确度数据服务的新型电子转向天线,5G网络能处理比当前高达200倍的数据传输量,而无需大幅度增加功率消耗。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。