5G的出现,势必会带来对更高移动网络连接速度和更大数据容量的需求。为了应对这一提升性能的需求,就需要新的基站技术。
基站是所有移动网络必须克服的一个瓶颈。也正是这个瓶颈,将目前的4G网络限制在50Mbps的平均峰值数据速度内,并阻碍它实现真正的实时传输。
相反,5G或许能实现实时无线通信,并实现10Gbps的最大数据速率。
德国弗莱堡的弗劳恩霍夫应用固体物理研究所(Fraunhofer Institute for Applied Solid State Physics)声称拥有“扩大这一瓶颈的技巧”。
弗劳恩霍夫应用固体物理研究所研究人员目前正在开发新型功率放大器,能比当前4G技术以更快的速度发送更大量的数据。
这些新型功率放大器能利用高达6GHz的额外无线频率;相比之下,LTE则限定在2.7GHz。
但是,尽管这些高频率能实现更快的数据传输,同时却也更难有效地提供更高功率。
因此,劳恩霍夫IAF的科学家们开始利用氮化镓(GaN)构建更适合于更高5G频率的射频电源发送器。
劳恩霍夫IAF的Rüdiger Quay博士解释道:“由于氮化镓特殊的晶体结构,同样的电压可以在更高的频率中实现,从而带来更高的功率和更好的效率性能。”
加上能为用户提供高精确度数据服务的新型电子转向天线,5G网络能处理比当前高达200倍的数据传输量,而无需大幅度增加功率消耗。
好文章,需要你的鼓励
检索增强生成(RAG)正成为AI领域的关键技术,通过结合外部信息检索与大语言模型的生成能力,解决传统模型仅依赖训练数据的局限性。RAG允许模型实时访问外部数据库或文档,提供更准确、更新的信息。该技术可应用于企业文档查询、个人化AI助手等场景,通过向模型提供特定领域知识来获得精准结果。微软专家指出,RAG有助于结合知识与推理、提高模型使用效率,并支持多模态应用。
加州大学伯克利分校研究团队开发出革命性的R2R2R系统,仅需智能手机拍摄和一段演示视频,就能自动生成大量机器人训练数据。该系统绕过了传统昂贵的远程操作和复杂物理仿真,通过3D重建和智能轨迹生成技术,让机器人训练效率提升27倍,成本大幅降低,有望让高质量机器人技能变得像安装手机应用一样普及。
AI数据平台iMerit认为企业级AI工具集成的下一步不是更多数据,而是更好的数据。该公司正式推出学者计划,旨在建立专家团队来微调生成式AI模型。与Scale AI的高吞吐量方法不同,iMerit专注于专家主导的高质量数据标注,需要深度人工判断和领域专业监督。公司目前与超过4000名学者合作,客户包括三家大型生成式AI公司、八家顶级自动驾驶公司等。
腾讯优图实验室提出AnoGen方法,仅用3张异常图片就能训练出高精度工业检测AI。该方法通过扩散模型学习异常特征并生成大量逼真样本,在MVTec数据集上将检测精度提升5.8%,为解决工业异常检测中样本稀缺问题提供了突破性方案。