SDN技术为IT专业人士提供了提高操作和网络效率强大的工具。在为新的IT项目、特定应用以及在网络各处使用SDN工具时有多种选择。
鉴于SDN技术协议的复杂性和缺乏统一标准以及厂商产品呈割据状态,实施SDN看起来挑战重重。不过SDN正在成为数据中心、校园网和WAN网络架构不可分割的一部分。
想要着手使用SDN技术,IT专业人士应放慢脚步,首先挑选一个好的应用,积累经验,然后再扩大SDN部署。
在评估特定应用程序时,你需要清楚哪些可以从SDN提供的可编程性、灵活性和安全性中获取最大效益。这包括:
新建数据中心:在构建一个新的数据中心时,SDN应该作为网络、服务器、存储和应用集成中的一个标准部分。OpenStack部署应包括SDN功能来增加网络功能。
迁移至私有云:为了让私有云更具与公有云服务竞争的优势,部署SDN来改善自动化和集中化管理。
提高网络密集型应用程序的性能,诸如大数据分析:大数据应用如Hadoop是高度分布式的,并通过处理间的低延迟优化性能。SDN提供应用优先级工具来改善网络性能。
改善内部数据中心安全:增加的东西流量可以减少针对数据中心内脆弱的应用的网络攻击。SDN为内部数据中心流量提供应用和虚拟机的微分段。
具成本效益的网络监控:白盒交换机上的SDN软件能够节约成本并提高网络监控工具的灵活性,得以“看见”所有网络流量。
提高分支WAN性能:改变分支流量模式,更多的流量会直接接入互联网,这意味着很多企业需要更新其WAN连接。SD-WAN为联网提供了更好的安全性、更高的可靠性。
IT专业人士应该从可信的渠道伙伴那里以及参与关注SDN技术实施的行业活动来获取帮助,诸如开放网络用户组会议(Open Network User Group)和开放网络峰会(Open Network Summit)。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
哈佛、MIT联合研究揭示人类语言理解的神经机制,发现大脑通过"信息出口"将语言从核心系统传递至专业脑区实现深度理解。研究提出浅层与深层理解的区别,为人工智能发展提供重要启示,表明真正智能需要多系统协作而非单一优化。该发现可能改变我们对语言认知的理解。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
腾讯混元等团队开发出革命性的AI视频生成自我评判系统PAVRM和训练方法PRFL,让AI能在创作过程中实时评估和改进视频质量,无需等到完成才反馈。该技术使视频动态表现提升56%,人体结构准确性提升21.5%,训练效率提升1.4倍,为AI视频生成质量带来质的飞跃。