SDN技术为IT专业人士提供了提高操作和网络效率强大的工具。在为新的IT项目、特定应用以及在网络各处使用SDN工具时有多种选择。
鉴于SDN技术协议的复杂性和缺乏统一标准以及厂商产品呈割据状态,实施SDN看起来挑战重重。不过SDN正在成为数据中心、校园网和WAN网络架构不可分割的一部分。
想要着手使用SDN技术,IT专业人士应放慢脚步,首先挑选一个好的应用,积累经验,然后再扩大SDN部署。
在评估特定应用程序时,你需要清楚哪些可以从SDN提供的可编程性、灵活性和安全性中获取最大效益。这包括:
新建数据中心:在构建一个新的数据中心时,SDN应该作为网络、服务器、存储和应用集成中的一个标准部分。OpenStack部署应包括SDN功能来增加网络功能。
迁移至私有云:为了让私有云更具与公有云服务竞争的优势,部署SDN来改善自动化和集中化管理。
提高网络密集型应用程序的性能,诸如大数据分析:大数据应用如Hadoop是高度分布式的,并通过处理间的低延迟优化性能。SDN提供应用优先级工具来改善网络性能。
改善内部数据中心安全:增加的东西流量可以减少针对数据中心内脆弱的应用的网络攻击。SDN为内部数据中心流量提供应用和虚拟机的微分段。
具成本效益的网络监控:白盒交换机上的SDN软件能够节约成本并提高网络监控工具的灵活性,得以“看见”所有网络流量。
提高分支WAN性能:改变分支流量模式,更多的流量会直接接入互联网,这意味着很多企业需要更新其WAN连接。SD-WAN为联网提供了更好的安全性、更高的可靠性。
IT专业人士应该从可信的渠道伙伴那里以及参与关注SDN技术实施的行业活动来获取帮助,诸如开放网络用户组会议(Open Network User Group)和开放网络峰会(Open Network Summit)。
好文章,需要你的鼓励
随着大语言模型在人工智能时代展现强大力量,可穿戴设备成为收集人体数据的重要载体。通过实时监测血压、心率、血糖等生命体征,结合AI边缘计算能力,医疗正向个性化转型。基因治疗、数字孪生技术让每个人都能拥有专属的医疗数字化身,实现从"报销型医疗"向"创新循证医疗"的转变,为疾病预防和健康管理带来革命性突破。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
在巴黎举办的欧洲开放基础设施峰会期间,专门用一整天时间讨论VMware迁移问题。博通收购VMware后许可证价格上涨,导致客户运营成本大幅增加。开源开发者展示了将VMware虚拟机迁移到开源替代方案的产品。Forrester分析师指出VMware客户对此感到信任破裂。OpenStack等开源解决方案虽然复杂度较高,但提供了健康的开源生态系统替代方案。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。