SDN技术为IT专业人士提供了提高操作和网络效率强大的工具。在为新的IT项目、特定应用以及在网络各处使用SDN工具时有多种选择。
鉴于SDN技术协议的复杂性和缺乏统一标准以及厂商产品呈割据状态,实施SDN看起来挑战重重。不过SDN正在成为数据中心、校园网和WAN网络架构不可分割的一部分。
想要着手使用SDN技术,IT专业人士应放慢脚步,首先挑选一个好的应用,积累经验,然后再扩大SDN部署。
在评估特定应用程序时,你需要清楚哪些可以从SDN提供的可编程性、灵活性和安全性中获取最大效益。这包括:
新建数据中心:在构建一个新的数据中心时,SDN应该作为网络、服务器、存储和应用集成中的一个标准部分。OpenStack部署应包括SDN功能来增加网络功能。
迁移至私有云:为了让私有云更具与公有云服务竞争的优势,部署SDN来改善自动化和集中化管理。
提高网络密集型应用程序的性能,诸如大数据分析:大数据应用如Hadoop是高度分布式的,并通过处理间的低延迟优化性能。SDN提供应用优先级工具来改善网络性能。
改善内部数据中心安全:增加的东西流量可以减少针对数据中心内脆弱的应用的网络攻击。SDN为内部数据中心流量提供应用和虚拟机的微分段。
具成本效益的网络监控:白盒交换机上的SDN软件能够节约成本并提高网络监控工具的灵活性,得以“看见”所有网络流量。
提高分支WAN性能:改变分支流量模式,更多的流量会直接接入互联网,这意味着很多企业需要更新其WAN连接。SD-WAN为联网提供了更好的安全性、更高的可靠性。
IT专业人士应该从可信的渠道伙伴那里以及参与关注SDN技术实施的行业活动来获取帮助,诸如开放网络用户组会议(Open Network User Group)和开放网络峰会(Open Network Summit)。
好文章,需要你的鼓励
最新研究发现,AI搜索引擎在引用新闻源时存在严重缺陷,不仅会捏造引用,还会减少原发布者的流量。这一问题对新闻业和公众对新闻的信任度有重大影响。研究显示,付费版AI聊天机器人表现比免费版更差,给出的错误答案更加自信。这些AI工具还经常伪造链接或引用文章的重印版本,而不是直接链接到原始来源。研究人员呼吁AI开发者提高透明度和引用准确性。
人工智能正在彻底改变软件开发方式。"氛围编码"是一种新兴的编程方法,它侧重于软件的整体"氛围"而非具体代码。开发者通过概念性指导与AI互动,迭代完善功能。这种方法可能会显著提高开发速度,增加客户端功能,但也带来了一些关于代码理解、测试和质量保证的新挑战。企业需要密切关注并适应这一趋势,以保持竞争力。
OpenAI为ChatGPT用户添加了期待已久的内部知识源引用功能。ChatGPT Team用户现可在测试期间直接连接内部知识库,引入公司特定信息。这项功能将使ChatGPT能够理解公司内部术语,执行语义搜索,直接链接内部资源,并提供最相关、最新的上下文信息,从而更好地回答企业用户的问题。
Google 最新旗舰语言模型 Gemini 2.5 Pro 发布后被其他 AI 热点掩盖。然而,实际测试表明,它在长文本处理、多模态推理和数据分析等方面表现出色,可能是目前最佳的推理模型。其百万级别的上下文窗口、强大的代码能力和详细的推理过程,为企业级应用打开了新的可能性,有望推动 Google 在生成式 AI 竞赛中领先。