IT组织经常被企业需求搞的焦头烂额,迫切需要提高数据中心的效率和敏捷性。尽管SDN具备了高可见度、高网络灵活性等优点,但是它依然没有步入正 轨,虽然有一些企业在2015年成功部署了SDN架构,但更多的企业认为SDN部署太复杂,扩展性问题多,由于员工技能问题并不能顺利部署SDN。
毫无疑问,2015年SDN曲折发展,然而随着2016年的到来,我们相信这是从早期部署的教训中学习经验以充分发挥SDN功能的一年。
随着云计算和物联网的发展,企业需要满足日益增长的不同需求,在企业推广SDN之前,还有许多工作需要完成,而2016年无疑是关键的一年,接下来将列举5个通往SDN成功的道路。
应用为王,确保自上而下的改变
应用程序持续增长,且不再是完全依赖于网络,已经成为了关注的焦点。直到现在,它已经被满足特定应用程序需求的网络所限制。然而,随着SDN的出现,网络可以通过应用程序本身来实现动态的编程,它的主要目标是向用户提供服务,SDN的重要性变得更加明显。
不要高估员工的专业技能
在部署SDN之前让员工掌握相应的技能,传统网络和软件定义网络是截然不同的。IT专业人员会发现他们需要一些专业的技能来管理虚拟化设置中的物理 硬件,员工需要一套全新的技能,让他们管理的网络基础设施发挥作用,让企业享受到SDN的便利。然而,这一切的准备工作都应该在部署SDN之前完成。
按部就班的部署SDN
大多数情况下,SDN仍然是一个全新的事物,虽然新技术能带来各种优势,但如果参与进去的组织不了解真正的需求以及SDN将如何发挥功能,那么失败在所难免。部署SDN之前,首先要考虑的是如何帮助企业实现目标或者其他方面的需求。
设定最终目标及期限
SDN可以将效率从几周提高到几秒,但是IT团队不能指望部署SDN也像这么快,IT组织需要认真投资重组他们的网络基础设施。SDN市场上厂商的数量在持续增长,必须花时间去调研选择最适合公司发展的需求。正如前面提到的,有一个弯曲的员工掌握新技能的过程。
深入了解SDN的挑战
每个技术都有其局限性,以iphone为例,每一次迭代开发人员都必须增加新的功能以适应消费者的需求。企业期待的是一个完美且完整的SDN解决方案,来解决他们所有的网络挑战,这样的想法无疑是不现实的。SDN旨在发展并满足企业需求,与传统网络不同。
好文章,需要你的鼓励
亚马逊云服务部门与OpenAI签署了一项价值380亿美元的七年协议,为ChatGPT制造商提供数十万块英伟达图形处理单元。这标志着OpenAI从研究实验室向AI行业巨头的转型,该公司已承诺投入1.4万亿美元用于基础设施建设。对于在AI时代竞争中处于劣势的亚马逊而言,这项协议证明了其构建和运营大规模数据中心网络的能力。
Meta FAIR团队发布的CWM是首个将"世界模型"概念引入代码生成的32亿参数开源模型。与传统只学习静态代码的AI不同,CWM通过学习Python执行轨迹和Docker环境交互,真正理解代码运行过程。在SWE-bench等重要测试中表现卓越,为AI编程助手的发展开辟了新方向。
当今最大的AI数据中心耗电量相当于一座小城市。美国数据中心已占全国总电力消费的4%,预计到2028年将升至12%。电力供应已成为数据中心发展的主要制约因素。核能以其清洁、全天候供电特性成为数据中心运营商的新选择。核能项目供应链复杂,需要创新的采购模式、标准化设计、早期参与和数字化工具来确保按时交付。
卡内基梅隆大学研究团队发现AI训练中的"繁荣-崩溃"现象,揭示陈旧数据蕴含丰富信息但被传统方法错误屏蔽。他们提出M2PO方法,通过改进数据筛选策略,使模型即使用256步前的陈旧数据也能达到最新数据的训练效果,准确率最高提升11.2%,为大规模异步AI训练开辟新途径。