移动设备真的能取代传统PC吗?当然,你可以从不同角度来看这个问题,但随着传统PC销量的下降,我们似乎看到了这一苗头,但可惜目前还没到这个时机(也许根本就没这一天), 但是谷歌还是给我们带来了一些信息,“更多的搜索发生在10几个国家中,包括美国和日本的移动设备上。”
从这些信息来看,移动设备的确超越了台式机,至少在谷歌搜索上是这样,这就难怪谷歌开始通过网站的“移动友好度”来进行站点评分,这也是多年来谷歌最大的一次算法改变。由此看出,广告和搜索业务的确都在与时俱进的发展。
另一作证是,根据谷歌近期的研究,发现移动应用程序,而不是Web浏览器,目前平均占每个用户每月30小时。所以,企业的目光都盯向了移动应用这块,也就是APP。
但是,简单地释放为您服务或网站的应用程序是不够的。谷歌建议你让用户轻松找到您的应用程序通过搜索引擎和宣传他们。最重要的是,谷歌建议您定期刷新您的应用程序,在其中加入广告,并添加深层链接,这些广告。
并非所有人都同意与谷歌的分析。 ComScore公司在其2015年3月的数字设备和流量调查发现,“虽然大多数生长在数字媒体消费,在过去四年中已经出现在智能手机上(高达394%) 和平板电脑(高达1721%的),这些移动平台是不是吃进入花在桌面聚集的时间,这仍然增长37%超过这个时间。“
不过,comScore还发现,移动搜索查询,包括智能手机和平板电脑,来到了总搜索量只有29%。在另一方面,该研究公司还发现,在2014年Facebook的移动业务收入超过了台式机的收入。
来自comScore的数据,这或许可以解释谷歌新的重点放在手机,从发布Search Engine Land的是,“谷歌搜索收入可能有本质见顶的PC上。谷歌这样既有权采取份额从竞争对手在PC上还是推动移动搜索收入保持增长。“
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
时尚零售巨头维多利亚的秘密因安全事件导致网站和线上订单服务中断,已立即启动应急响应、邀请第三方专家协助恢复运营,实体店仍正常营业。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。