应用性能基础设施企业Riverbed公司日前发布SteelCentral平台最新增强功能。Riverbed SteelCentral是一款全面集成的性能管理解决方案,提供集中可视化与深度分析,确保企业应用最佳性能,同时实现IT效率和生产率最大化。无论挑战来自广泛监控所有应用、网络和基础设施的性能,还是来自深入关键业务应用代码,SteelCentral都是唯一一款端到端解决方案。它整合了用户体验、应用、基础设施和网络监控功能,实现应用性能的全面可视化。
Riverbed高级副总裁兼SteelCentral总经理Mike Sargent谈到:“今天,SteelCentral在各个域孤岛间一路过关斩将,相互协作,旨在交付最佳应用性能,消除相互指责,加快解决问题。有助于IT再次将精力集中在企业的战略目标上。领先企业采用SteelCentral作为其应用性能‘指挥中心’的支柱——他们很清楚若无这样一个强大的应用混合运维视图,他们的相互指责将无法实现今天混合IT环境所需要的应用性能水平。
SteelCentral的这些全新增强功能在协作排解问题能力上前进了一大步。虽然新特性是在该平台的关键组件上推出的——包括Portal,AppInternals,AppResponse,NetAuditor,NetShark,NetPlanner 和 NetSensor的增强功能——但是它们也支持一般性的提升平台集成,同时增强了几项强大的功能,包括扩展的网络和应用可视化;最佳端到端应用事务监控;更具成本效益的Web应用和广域网优化监控。
性能管理集成方法,应对复杂的混合应用环境
提升IT协作和端到端排障能力是今天应用驱动业务领域的关键。对于今天的企业来讲,应用性能等同于业务性能,与此同时,随着SaaS、云、混合网络和终端用户移动性的增加,传统的、以域为中心的工具已无法应对应用复杂性。
“许多企业不具备成功所需的适当的性能管理工具,”企业管理协会高级分析师Shamus McGillicuddy说到。“普通企业会使用6-10种监控和排障工具,甚至还有更多的‘存架软件’。这些工具都不是集成的,都只负责各自的领域。现代IT基础架构需要那些与环境相关的、集成的深入分析,这点只有跨域管理工具才可以实现。”
应用不只是停留在服务器上的软件代码,而且还指:由应用调用的多服务复杂集成;多地方多数据库中存放的数据;本地数据中心和云中存放的物理和虚拟服务器;连接数据和服务的多个网络;错综复杂的应用软件架构;以及,各地从多种设备上访问应用的终端用户。在这种环境下,迷局中的任何部分,服务中的任何缺陷——从服务器故障,到代码问题,数据库问题,网络延迟,再到用户设备兼容性——都会降低应用速度或致使其完全宕机。不幸的是,企业一般采用单点解决方案来管理性能,而单点解决方案是彼此不交流的多个孤岛式工具。这导致极其难以解决的性能问题,以及耗费大量时间相互争论和指责。
SteelCentral以全新的视角应对应用性能管理。它深入全面地捕捉并分析所有网络和应用的性能数据,同时实时监控所有用户的终端用户体验。
SteelCentral新增强功能提升平台集成,强化多项强大的功能
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。