根据企业管理协会研究显示,大数据虽是炒作焦点,但确实在影响网络人员的容量规划。
大数据分析现在是炒作焦点,很多企业都喜欢这样的想法,即通过对海量结构化、非结构化和部分结构化数据进行高级分析来发现意想不到的可操作业务洞察力。但所有这些数据处理是有代价的,特别是,这些数据会给网络带来影响。
大数据和大数据对网络运营影响的问题并不适合心脏虚弱的人。我们都知道,大数据工具并不成熟,并且,知道如何使用它们的人也供不应求。但先抛开这个问题不谈,让我们来谈谈大数据给IT基础设施和运营带来的新负担。通过大数据技术,现在企业都开始想办法处理大量数据,而这些数据本来可能被抛弃或置之不管。
企业管理协会(EMA)对北美150家部署大数据的企业进行了调查,以了解大数据对IT基础设施管理的影响。该报告《大数据对IT基础设施和管理的影响》研究了哪些IT方面最受大数据的影响,该报告还探讨了IT企业如何使用这些相同的大数据技术来改进IT规划和运营。也许并不奇怪的是,该研究发现,网络和网络管理团队比任何人都更深刻地感受到大数据的影响。
大数据增加网络流量,迫使工程师作出调整
我们的研究发现,45%部署大数据的企业发现网络流量增加,这主要是因为对数据的收集。我们还发现,46%的这些公司发现因为对这些大数据的备份而让网络流量增加。而IT基础设施唯一受到大数据影响的是存储,这并不奇怪,因为大数据主要是关于对海量数据的收集和存储。
随着企业扩展对大数据技术的使用,网络和大数据影响问题变得更加突出。例如,EMA将在生产环境部署有6个或以上大数据项目的企业评为“高级”大数据用户。在这些公司中,55%看到来自数据收集更多的网络流量,61%则报告来自大数据备份的更多流量。
基于大数据造成的网络流量激增,EMA询问这些企业其网络团队如何应对这些情况。我们的研究发现在IT企业内所有基础设施管理人员中,网络管理人员在调整其基础设施规划和设计做法以应对大数据。超过半数的网络管理人员称他们正在制定计划来满足大数据的需求,从改进容量管理做法到扩展和升级网络基础设施来支持流量增加。特别是,这些管理人员需要设定大数据流量基准;这些流量只会不断增长,所以工程师需要理解这些趋势,并相应地规划容量。
与此同时,半数网络团队称大数据迫使他们调整其日常运营做法。这些网络管理人员需要调整其性能监控和故障排查工具以及流程,这都是因为大数据网络流量的增加以及突发性质。
网络管理人员让大数据为其所用
在探讨大数据对基础设施的影响后,EMA研究了IT企业如何让大数据为其所用。我们发现很多研究参与者在输出IT监测数据到大数据环境以进行收集和分析,于是,我们询问这些企业对这些IT监测数据的高级分析在改进哪些管理做法。
EMA发现,57%在使用大数据分析来支持网络容量规划,53%在使用它来支持网络可用性和性能监控。最后,在故障排查任务中,35%在使用大数据隔离网络中的基础设施问题。如上所述,该研究发现,网络管理人员在调整其规划和运营做法以应对大数据给网络带来的影响。现在,我们发现,很多这些网络管理人员开始运用大数据分析以加强规划和运营。
另外,对IT监测数据的大数据分析具有很大的潜力。EMA不仅观察到IT管理做法的变化,而且还衡量了这给IT企业带来的好处。45%的IT企业告诉我们,大数据分析让他们可以积极防御基础设施问题;45%报告称他们可更有效地管理IT运营费用。此外,46%称他们通过大数据分析实现更有效的基础设施容量规划。最后,41%称对IT监测数据的大数据分析帮助他们更好地让IT部门配合业务部门。
这项EMA研究分析了大数据对IT基础设施和IT管理所有方面带来的影响和好处,但很显然,网络管理团队应该特别注意大数据影响问题。大数据对基础设施的影响是真实的,并将随着时间的推移而增加。与此同时,网络工程师和管理人员也可以利用大数据分析来改进他们自己的工作。
好文章,需要你的鼓励
随着大语言模型在人工智能时代展现强大力量,可穿戴设备成为收集人体数据的重要载体。通过实时监测血压、心率、血糖等生命体征,结合AI边缘计算能力,医疗正向个性化转型。基因治疗、数字孪生技术让每个人都能拥有专属的医疗数字化身,实现从"报销型医疗"向"创新循证医疗"的转变,为疾病预防和健康管理带来革命性突破。
这项由DP Technology和北京大学联合完成的研究提出了SphereAR方法,通过超球面约束解决连续标记自回归图像生成中的方差崩溃问题。该方法将所有输入输出限制在固定半径球面上,实现尺度不变性,在ImageNet数据集上创下自回归模型新纪录,SphereAR-H达到1.34 FID分数,首次让纯自回归方法在同等参数规模下超越扩散和遮蔽生成模型。
在巴黎举办的欧洲开放基础设施峰会期间,专门用一整天时间讨论VMware迁移问题。博通收购VMware后许可证价格上涨,导致客户运营成本大幅增加。开源开发者展示了将VMware虚拟机迁移到开源替代方案的产品。Forrester分析师指出VMware客户对此感到信任破裂。OpenStack等开源解决方案虽然复杂度较高,但提供了健康的开源生态系统替代方案。
微软研究院联合清华大学开发的PixelCraft系统,通过多智能体协作突破了AI视觉推理瓶颈。该系统采用专业分工模式,包含调度员、规划员、推理员等角色,配备图像记忆库实现灵活推理。在权威测试中准确率提升5-9个百分点,特别擅长分析复杂图表和几何图形,为科研、金融、教育等领域提供精确的视觉分析能力。