宽带频率梳确保同一条光纤里面的多个通信信道之间的串扰是可以消除的。
长期以来,光纤存在的重大问题之一就是,你给信号添加的能量越大――以便让信号传输得更远,遇到的失真就越严重。而这种失真会降低数据质量。
这之所以是个问题,就是因为理想情况下你希望光纤能够远距离铺设。铺设一条长长的光缆其成本要低于铺设多条光缆以及使用添加的中继器,而后者就是如今通常采用的做法。
解读12000公里外的数据
不过科学家们认为,他们已找到了一种解决办法。
加州大学圣迭戈分校的研究人员表示,他们已经能够在不使用中继器的前提下,将数据沿着12000公里长的光纤发送出去,却仍能够解读12000公里开外的信息。
不过他们确实使用了标准的放大器。
然而他们表示,他们的实验证明你可以消除成本高昂的再生中继器。他们是通过失真消除技术做到这一点的。
这个光子学研究小组在学术研究杂志《科学》上发表了研究成果。
可预测的串扰
这个概念异常简单。研究人员认为,串扰引起的信号失真是可以预测的。该大学在官方网站上的一篇文章中声称,因而,信号失真“在光纤的接收端应该是可以消除的”。
串扰是指光缆中多个信道之间出现的干扰。一条电路中传输的信号会对另一条电路产生影响――信号会溢出来。研究人员表示,他们知道这种影响,所以能够消除影响,因而消除失真。
预失真波形
该光子学研究小组使用物理原理取得了成果。预失真波形印在始发端生成频率梳的载波上。然后,在光缆输出端恢复毫无未损的信息。
高通研究所的研究科学家Bill Kuo说:“我们抢在会出现在光纤里面的失真影响之前及时行动。”Kuo负责频率梳研发,也是该研究小组发表在《科学》上的论文的作者之一。
消除技术
消除技术总体上变得更常见。一些科学家正在试用算法来消除无线电中的自干扰现象。
这种情况下,这是成本较低的处理能力,头一次允许运行更复杂的数学运算和公式。算法变得更容易获取。
无线电
那些主攻无线电领域的科学家正在研制自干扰消除技术,以便更有效地利用频谱。其想法是,如果你能预测传输如何受到其自身干扰的影响,就能消除并杜绝干扰。
多年来,噪声消除耳机技术就运用了这个基本概念。耳机听到不需要的噪声后,不同步地模拟噪声,然后消除噪声。
宽带梳
以光纤串扰消除为例,宽带频率梳可以对同一光纤里面的串扰进行消除。
高通研究所的另一名研究科学家、论文作者之一Nikola Alic说:“如今的光纤系统有点类似流沙。就流沙而言,你挣扎得越厉害,就会下沉得越快。”
如果使用传统的“光纤而言,到了一定程度后,你给信号添加的能量越大,遇到的失真就越严重,这实际上阻止人们将光纤铺设得更远。”
新的研究成果一旦付诸实践,有望解决这个问题,因而不需要在光纤链路上沿路安装电子再生器(又叫中继器),因而可以节省一大笔成本。
好文章,需要你的鼓励
武汉大学研究团队提出DITING网络小说翻译评估框架,首次系统评估大型语言模型在网络小说翻译方面的表现。该研究构建了六维评估体系和AgentEval多智能体评估方法,发现中国训练的模型在文化理解方面具有优势,DeepSeek-V3表现最佳。研究揭示了AI翻译在文化适应和创意表达方面的挑战,为未来发展指明方向。
谷歌发布新的AI学术搜索工具Scholar Labs,旨在回答详细研究问题。该工具使用AI识别查询中的主要话题和关系,目前仅对部分登录用户开放。与传统学术搜索不同,Scholar Labs不依赖引用次数或期刊影响因子等传统指标来筛选研究质量,而是通过分析文档全文、发表位置、作者信息及引用频次来排序。科学界对这种忽略传统质量评估方式的新方法持谨慎态度,认为研究者仍需保持对文献质量的最终判断权。
参数实验室等机构联合发布的Dr.LLM技术,通过为大型语言模型配备智能路由器,让AI能根据问题复杂度动态选择计算路径。该系统仅用4000个训练样本和极少参数,就实现了准确率提升3.4%同时节省计算资源的突破,在多个任务上表现出色且具有强泛化能力,为AI效率优化开辟新方向。