宽带频率梳确保同一条光纤里面的多个通信信道之间的串扰是可以消除的。
长期以来,光纤存在的重大问题之一就是,你给信号添加的能量越大――以便让信号传输得更远,遇到的失真就越严重。而这种失真会降低数据质量。
这之所以是个问题,就是因为理想情况下你希望光纤能够远距离铺设。铺设一条长长的光缆其成本要低于铺设多条光缆以及使用添加的中继器,而后者就是如今通常采用的做法。
解读12000公里外的数据
不过科学家们认为,他们已找到了一种解决办法。
加州大学圣迭戈分校的研究人员表示,他们已经能够在不使用中继器的前提下,将数据沿着12000公里长的光纤发送出去,却仍能够解读12000公里开外的信息。
不过他们确实使用了标准的放大器。
然而他们表示,他们的实验证明你可以消除成本高昂的再生中继器。他们是通过失真消除技术做到这一点的。
这个光子学研究小组在学术研究杂志《科学》上发表了研究成果。
可预测的串扰
这个概念异常简单。研究人员认为,串扰引起的信号失真是可以预测的。该大学在官方网站上的一篇文章中声称,因而,信号失真“在光纤的接收端应该是可以消除的”。
串扰是指光缆中多个信道之间出现的干扰。一条电路中传输的信号会对另一条电路产生影响――信号会溢出来。研究人员表示,他们知道这种影响,所以能够消除影响,因而消除失真。
预失真波形
该光子学研究小组使用物理原理取得了成果。预失真波形印在始发端生成频率梳的载波上。然后,在光缆输出端恢复毫无未损的信息。
高通研究所的研究科学家Bill Kuo说:“我们抢在会出现在光纤里面的失真影响之前及时行动。”Kuo负责频率梳研发,也是该研究小组发表在《科学》上的论文的作者之一。
消除技术
消除技术总体上变得更常见。一些科学家正在试用算法来消除无线电中的自干扰现象。
这种情况下,这是成本较低的处理能力,头一次允许运行更复杂的数学运算和公式。算法变得更容易获取。
无线电
那些主攻无线电领域的科学家正在研制自干扰消除技术,以便更有效地利用频谱。其想法是,如果你能预测传输如何受到其自身干扰的影响,就能消除并杜绝干扰。
多年来,噪声消除耳机技术就运用了这个基本概念。耳机听到不需要的噪声后,不同步地模拟噪声,然后消除噪声。
我之前曾写过一篇文章,介绍无线电和干扰消除算法,有兴趣的朋友可以看一下:《可用频率有望因自干扰消除算法而翻一番》(http://www.networkworld.com/article/2599403/wireless/available-spectrum-will-double-with-self-interference-canceling-algorithms.html)。
宽带梳
以光纤串扰消除为例,宽带频率梳可以对同一光纤里面的串扰进行消除。
高通研究所的另一名研究科学家、论文作者之一Nikola Alic说:“如今的光纤系统有点类似流沙。就流沙而言,你挣扎得越厉害,就会下沉得越快。”
如果使用传统的“光纤而言,到了一定程度后,你给信号添加的能量越大,遇到的失真就越严重,这实际上阻止人们将光纤铺设得更远。”
新的研究成果一旦付诸实践,有望解决这个问题,因而不需要在光纤链路上沿路安装电子再生器(又叫中继器),因而可以节省一大笔成本。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
马里兰大学研究团队通过测试25个大型AI模型发现,即使最先进的AI评判系统在需要同时考虑多个标准时也会出现严重偏差,准确率仅32%-53%。研究构建了Multi-Crit评测基准,揭示了AI在多标准权衡中的根本性局限,为改进AI评判系统的公平性和可靠性提供了重要参考,对AI在内容审核、产品评价等应用场景具有重要指导意义。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
南京理工大学团队开发ViLoMem框架,首次实现AI的双流记忆机制,分别处理视觉和逻辑错误。该系统模仿人类认知,让AI能从错误中持续学习,在数学推理等多模态任务中显著提升准确率,为AI从被动工具向主动学习伙伴的转变提供了重要技术突破。