从专用服务转变到公共互联网,混合虚拟专用网络(hybrid VPN)会受到哪些影响?
随着企业努力解决不断增多的流量来源种类和不断增大的流量总量问题,IT团队也越来越积极研究将混合广域网(hybrid WAN)架构部署在专用服务和公共互联网上。这样的转变对于混合虚拟专用网络(hybrid VPN)来说意味着什么呢?
首先,让我们来讨论一个混合虚拟专用网络(hybrid VPN)所用到的一些服务:
因特网协议安全(IPsec) — 由于移动通信巨幅增长,因特网协议安全(IPsec) 成为了一个热点。在20世纪90年代末,大多数企业广域网都是建立在管理设备上,因特网协议安全(IPsec)隧道仅应用在跨国家性质的全球办公室。随着 基于虚拟专用网络(VPNs)的多协议标签交换(MPLS)的出现,服务质量(QoS)使得IT团队不再将IP骨干网作为他们的广域网。然而,最近业界认 为对于大多数应用程序和组织来说,因特网协议安全(IPsec)技术足够安全。唯一的例外可能是政府和金融机构。统一通信的火速发展,应用程序在任意位置 都可以被访问的需求,都在推动混合虚拟专用网络(hybrid VPN)采用因特网协议安全(IPsec)技术。
加密流量的缺点包括从服务质量(QoS)角度的失去控制,以及加密带来的开销。如果您的通信流量分布在一个单一的骨干网上,那么基于一个因特网虚拟专用网络(VPN),您的通信 性能应该具有很强的可预见性。当通信流量横穿多个运营商的IP骨干网时,情况就不一样了。而且,随着应用程序变得越来越复杂,如果没有确定连通性和吞吐量 都足够,有些通信可能会被扣留或限制访问。
3层多协议标签交换虚拟专用网络(MPLS Layer 3 VPN) — 数年来,由于其安全性、“任意到任意”的拓扑结构,以及使用服务质量(QoS)技术来决定应用程序优先级的能力,3层 MPLS VPN一直都是企业广域网通信的主食。MPLS VPN可以支持多种路由协议,拥有在全球基础上保证流量吞吐量,正常运行时间,抖动和延迟时间的服务级别协议,综上很容易理解为什么MPLS VPN变得如此受欢迎。
2层虚拟专用局域网服务网络(VPLS Layer 2 VPN) — 由于取消了第3层,企业可以基于任意到任意的基础,在地理距离上扩展其局域网。2层 VPNs的使用案例一般是根据需求来延长数据链路层,或者提供一个自管理3层能力。例如一个基于云计算的全球数据中心部署,VPLS可以确保局域网到局域 网的连通性,允许在任何由VPLS服务的位置添加诸如其它服务器的资源。随着客户端上将要运行越来越复杂的路由设置及非标要求,VPLS允许组织在他们各 自的路由上来定义层级。
运营商以太网产品 — 在混合广域网(hybrid WAN)设计组合中,运营商以太网代表着关键构建模块之一。选项包括:
SDH/SONET — 利用运营商的SDH和SONET性能已经造成以太网大比例使用传统网络。SDH和SONET转化为服务,由于高可用性可提供良好的运行时间。
Ethernet over MPLS/Virtual leased lines (VLL) — 该技术模拟了跨供应商的多协议标签交换(MPLS)网络规模的点对点和多点以太网电路。俗称为伪,这些电路提供相同的虚拟专用局域网服务(VPLS)功能,不含任意到任意属性。
Carrier Ethernet transport — 以太网最纯粹的形式,因为通信起始和终止都在以太网,城域范围内的理想选择。
请记住一点,为了了解您自己的网络体系结构,需要一个诊断方法来调整您组织战略的细节、技术资源以及预算。如果未经诊断,在整个服务合同的周期中,对于企业来说,技术实施过程将可能变成一个瓶颈,而不会带来优势。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。