从专用服务转变到公共互联网,混合虚拟专用网络(hybrid VPN)会受到哪些影响?
随着企业努力解决不断增多的流量来源种类和不断增大的流量总量问题,IT团队也越来越积极研究将混合广域网(hybrid WAN)架构部署在专用服务和公共互联网上。这样的转变对于混合虚拟专用网络(hybrid VPN)来说意味着什么呢?
首先,让我们来讨论一个混合虚拟专用网络(hybrid VPN)所用到的一些服务:
因特网协议安全(IPsec) — 由于移动通信巨幅增长,因特网协议安全(IPsec) 成为了一个热点。在20世纪90年代末,大多数企业广域网都是建立在管理设备上,因特网协议安全(IPsec)隧道仅应用在跨国家性质的全球办公室。随着 基于虚拟专用网络(VPNs)的多协议标签交换(MPLS)的出现,服务质量(QoS)使得IT团队不再将IP骨干网作为他们的广域网。然而,最近业界认 为对于大多数应用程序和组织来说,因特网协议安全(IPsec)技术足够安全。唯一的例外可能是政府和金融机构。统一通信的火速发展,应用程序在任意位置 都可以被访问的需求,都在推动混合虚拟专用网络(hybrid VPN)采用因特网协议安全(IPsec)技术。
加密流量的缺点包括从服务质量(QoS)角度的失去控制,以及加密带来的开销。如果您的通信流量分布在一个单一的骨干网上,那么基于一个因特网虚拟专用网络(VPN),您的通信 性能应该具有很强的可预见性。当通信流量横穿多个运营商的IP骨干网时,情况就不一样了。而且,随着应用程序变得越来越复杂,如果没有确定连通性和吞吐量 都足够,有些通信可能会被扣留或限制访问。
3层多协议标签交换虚拟专用网络(MPLS Layer 3 VPN) — 数年来,由于其安全性、“任意到任意”的拓扑结构,以及使用服务质量(QoS)技术来决定应用程序优先级的能力,3层 MPLS VPN一直都是企业广域网通信的主食。MPLS VPN可以支持多种路由协议,拥有在全球基础上保证流量吞吐量,正常运行时间,抖动和延迟时间的服务级别协议,综上很容易理解为什么MPLS VPN变得如此受欢迎。
2层虚拟专用局域网服务网络(VPLS Layer 2 VPN) — 由于取消了第3层,企业可以基于任意到任意的基础,在地理距离上扩展其局域网。2层 VPNs的使用案例一般是根据需求来延长数据链路层,或者提供一个自管理3层能力。例如一个基于云计算的全球数据中心部署,VPLS可以确保局域网到局域 网的连通性,允许在任何由VPLS服务的位置添加诸如其它服务器的资源。随着客户端上将要运行越来越复杂的路由设置及非标要求,VPLS允许组织在他们各 自的路由上来定义层级。
运营商以太网产品 — 在混合广域网(hybrid WAN)设计组合中,运营商以太网代表着关键构建模块之一。选项包括:
SDH/SONET — 利用运营商的SDH和SONET性能已经造成以太网大比例使用传统网络。SDH和SONET转化为服务,由于高可用性可提供良好的运行时间。
Ethernet over MPLS/Virtual leased lines (VLL) — 该技术模拟了跨供应商的多协议标签交换(MPLS)网络规模的点对点和多点以太网电路。俗称为伪,这些电路提供相同的虚拟专用局域网服务(VPLS)功能,不含任意到任意属性。
Carrier Ethernet transport — 以太网最纯粹的形式,因为通信起始和终止都在以太网,城域范围内的理想选择。
请记住一点,为了了解您自己的网络体系结构,需要一个诊断方法来调整您组织战略的细节、技术资源以及预算。如果未经诊断,在整个服务合同的周期中,对于企业来说,技术实施过程将可能变成一个瓶颈,而不会带来优势。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。