专注于推动网络与安全融合的全球网络安全领导者 Fortinet®(NASDAQ:FTNT)近日宣布了两项重大收购交易,分别收购了领先的云原生应用程序保护平台(CNAPP)开拓者Lacework,以及内部风险和数据保护领域的佼佼者Next DLP。这两项收购不仅进一步巩固了Fortinet在网络与安全融合领域的领导地位,还显著提升了其在云安全和数据泄露防护方面的能力。
收购Lacework,构建全面AI驱动型云安全平台
自2024年8月1日起,Fortinet成功完成了对Lacework的收购。Lacework作为云安全和云原生应用程序保护平台(CNAPP)的开拓者,其创新的AI技术为客户提供了高度集成且强大的云安全解决方案。
Fortinet创始人、董事长兼首席执行官谢青(Ken Xie)表示:“Lacework的加入,是我们对广大客户承诺的又一重要兑现,即通过创新解决方案为本地和云环境提供一致且高效的安全性。Lacework的云原生平台与Fortinet Security Fabric的无缝集成,将构建一个基于单一供应商的全面且全架构的AI驱动型云安全平台,为客户带来前所未有的安全体验。”
此次收购不仅为Fortinet带来了Lacework的先进技术,还包含了225项授权专利和专利申请,极大地丰富了Fortinet在云安全和人工智能技术领域的知识产权储备。同时,一支经验丰富的销售团队和才华横溢的工程师团队也将加入Fortinet大家庭,共同推动公司在全球范围内的业务扩展和技术创新。
收购Next DLP,强化数据泄露防护能力
紧随Lacework收购之后,Fortinet于2024年8月5日宣布了对Next DLP的收购,该交易已即时生效。Next DLP作为内部风险和数据保护领域的领先者,其SaaS云原生数据保护平台与Fortinet基于AI/ML的异常检测和分类领先技术的无缝融合,为客户提供了强大的数据泄露防护能力。通过此次收购,Fortinet将进一步增强其在企业数据泄露防护(DLP)领域的市场地位,并在终端和SASE(安全访问服务边缘)集成DLP市场巩固其领导地位。
谢青强调:“收购Next DLP是我们战略布局中的重要一环,它标志着我们在数据泄露防护领域的又一重要突破。Next DLP的加入将大幅提升我们的数据防护能力,帮助客户在SASE及终端部署的各个环节更加高效地管理与防范内部风险。”
Next DLP首席执行官Connie Stack表示:“我们很高兴能够与Fortinet携手,共同推动数据安全领域的创新与发展。通过此次收购,我们将把Next DLP的卓越技术与Fortinet的市场领导地位相结合,为全球用户提供更加全面、高效的数据安全解决方案。”
凭借持续的技术创新,Next DLP 已备受行业分析师广泛认可。在 2023 年 Gartner® 数据泄露防护市场指南 和 2023 年 Gartner® 内部风险管理解决方案市场指南中,Next DLP 获评代表供应商殊荣。
作为为企业提供业内领先统一 SASE 解决方案承诺的一部分,Fortinet 计划集成 Next DLP 创新技术,为 Fortinet 安全服务边缘(SSE)产品系列新增高级数据泄露防护功能,并在 Fortinet Security Fabric 安全平台中全新集成内部风险和数据保护功能。
展望未来,持续引领网络安全新纪元
随着数字化转型的加速推进,网络安全和数据保护已成为企业不可或缺的重要组成部分。Fortinet通过连续收购Lacework和Next DLP,不仅增强了自身的技术实力和市场份额,还为客户提供了更加全面、智能的安全防护方案。未来,Fortinet将继续秉承创新为先的核心理念,不断推动网络安全领域的技术进步和发展,为全球用户构建更加安全、可信的数字世界。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。