无数物联网设备正不断从云端“母舰”处检查丰富数据,而其中使用的强大API接口也迅速成为恶意黑客眼中的攻击目标。于是,API安全再次站在了时代舞台的最中央。
谷歌API安全计划Apigee的出现,令API的整体安全水平迈上新的台阶。而且不仅仅是物联网,流畅丝滑的用户体验设计背后也同样要求机器间数据的无缝对接。只有这样才能以低摩擦方式交换大量数据,将远端分布式响应技术融入到前所未有的精彩体验中来。
但为了让这一切“正常起效”,我们也要考虑到强大接口所引发的恶意攻击可能性。如果不加控制,创纪录的传输能力只会把敏感数据以创纪录的速度传递给恶意黑客。
为此,我们在今年的RSA大会上发表了一篇文章,讨论初创企业正以怎样的方式保障API安全、防止其在悄无声息之下沦为倾泄数据的致命软肋。除我们之外,知名安全媒体DarkReading也打算好好给API安全事件引发的业务损失算笔账。
如今,更多重量级巨头也在进军这一领域,打算将API安全保障塑造成“下一件大事”。谷歌为自家云平台打造的Apigee Advanced API Security,就是想帮助组织客户发现API配置错误并阻止恶意机器人。从之前的记录来看,API配置错误正是多数安全事故的罪魁祸首之一。
好在OWASP API Security Project等工具已经相继出炉,能帮助大家对自己的API或需要交互的API开展健康检查,并以结果作为安全衡量基准。这些工具还深入剖析了常见错误配置及处理方法,相当于给大家提供了良好的保护起点。
而就在企业重视API保护工作的同时,下阶段针对API的黑客攻击也必然迅速增加。而这一波的攻击重点,很可能就是在云和大数据体系中至关重要的工业接口。而一旦这里存在配置错误,将很快导致大量数据被传递至犯罪分子手中,最终引发严重危害。在这场关于安全的军备竞赛中,我们唯一能做的就是避免自己沦为那个受害者。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。