无数物联网设备正不断从云端“母舰”处检查丰富数据,而其中使用的强大API接口也迅速成为恶意黑客眼中的攻击目标。于是,API安全再次站在了时代舞台的最中央。
谷歌API安全计划Apigee的出现,令API的整体安全水平迈上新的台阶。而且不仅仅是物联网,流畅丝滑的用户体验设计背后也同样要求机器间数据的无缝对接。只有这样才能以低摩擦方式交换大量数据,将远端分布式响应技术融入到前所未有的精彩体验中来。
但为了让这一切“正常起效”,我们也要考虑到强大接口所引发的恶意攻击可能性。如果不加控制,创纪录的传输能力只会把敏感数据以创纪录的速度传递给恶意黑客。
为此,我们在今年的RSA大会上发表了一篇文章,讨论初创企业正以怎样的方式保障API安全、防止其在悄无声息之下沦为倾泄数据的致命软肋。除我们之外,知名安全媒体DarkReading也打算好好给API安全事件引发的业务损失算笔账。
如今,更多重量级巨头也在进军这一领域,打算将API安全保障塑造成“下一件大事”。谷歌为自家云平台打造的Apigee Advanced API Security,就是想帮助组织客户发现API配置错误并阻止恶意机器人。从之前的记录来看,API配置错误正是多数安全事故的罪魁祸首之一。
好在OWASP API Security Project等工具已经相继出炉,能帮助大家对自己的API或需要交互的API开展健康检查,并以结果作为安全衡量基准。这些工具还深入剖析了常见错误配置及处理方法,相当于给大家提供了良好的保护起点。
而就在企业重视API保护工作的同时,下阶段针对API的黑客攻击也必然迅速增加。而这一波的攻击重点,很可能就是在云和大数据体系中至关重要的工业接口。而一旦这里存在配置错误,将很快导致大量数据被传递至犯罪分子手中,最终引发严重危害。在这场关于安全的军备竞赛中,我们唯一能做的就是避免自己沦为那个受害者。
好文章,需要你的鼓励
希腊塞萨洛尼基大学研究团队开发出MIR-L算法,通过"彩票假说"发现大型图像修复网络中的关键子网络。该算法采用迭代剪枝策略,将网络参数减少90%的同时保持甚至提升修复性能。MIR-L能同时处理去雨、去雾、降噪等多种图片问题,为资源受限设备的实时图像处理提供了高效解决方案,具有重要的实用价值和环保意义。
这项由OpenRouter公司团队和Andreessen Horowitz(a16z)投资机构联合开展的研究,于2025年12月发表。
卡内基梅隆大学团队提出DistCA技术,通过分离AI模型中的注意力计算解决长文本训练负载不平衡问题。该技术将计算密集的注意力任务独立调度到专门服务器,配合乒乓执行机制隐藏通信开销,在512个GPU的大规模实验中实现35%的训练加速,为高效长文本AI模型训练提供了新方案。