无数物联网设备正不断从云端“母舰”处检查丰富数据,而其中使用的强大API接口也迅速成为恶意黑客眼中的攻击目标。于是,API安全再次站在了时代舞台的最中央。
谷歌API安全计划Apigee的出现,令API的整体安全水平迈上新的台阶。而且不仅仅是物联网,流畅丝滑的用户体验设计背后也同样要求机器间数据的无缝对接。只有这样才能以低摩擦方式交换大量数据,将远端分布式响应技术融入到前所未有的精彩体验中来。
但为了让这一切“正常起效”,我们也要考虑到强大接口所引发的恶意攻击可能性。如果不加控制,创纪录的传输能力只会把敏感数据以创纪录的速度传递给恶意黑客。
为此,我们在今年的RSA大会上发表了一篇文章,讨论初创企业正以怎样的方式保障API安全、防止其在悄无声息之下沦为倾泄数据的致命软肋。除我们之外,知名安全媒体DarkReading也打算好好给API安全事件引发的业务损失算笔账。
如今,更多重量级巨头也在进军这一领域,打算将API安全保障塑造成“下一件大事”。谷歌为自家云平台打造的Apigee Advanced API Security,就是想帮助组织客户发现API配置错误并阻止恶意机器人。从之前的记录来看,API配置错误正是多数安全事故的罪魁祸首之一。
好在OWASP API Security Project等工具已经相继出炉,能帮助大家对自己的API或需要交互的API开展健康检查,并以结果作为安全衡量基准。这些工具还深入剖析了常见错误配置及处理方法,相当于给大家提供了良好的保护起点。
而就在企业重视API保护工作的同时,下阶段针对API的黑客攻击也必然迅速增加。而这一波的攻击重点,很可能就是在云和大数据体系中至关重要的工业接口。而一旦这里存在配置错误,将很快导致大量数据被传递至犯罪分子手中,最终引发严重危害。在这场关于安全的军备竞赛中,我们唯一能做的就是避免自己沦为那个受害者。
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
谷歌DeepMind团队开发的GraphCast是一个革命性的AI天气预测模型,能够在不到一分钟内完成10天全球天气预报,准确性超越传统方法90%的指标。该模型采用图神经网络技术,通过学习40年历史数据掌握天气变化规律,在极端天气预测方面表现卓越,能耗仅为传统方法的千分之一,为气象学领域带来了效率和精度的双重突破。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
韩国成均馆大学研究团队开发了首个机器遗忘可视化评估系统Unlearning Comparator,解决了AI"选择性失忆"技术缺乏标准化评估的问题。系统通过直观界面帮助研究人员深入比较不同遗忘方法,并基于分析洞察开发出性能优异的引导遗忘新方法,为构建更负责任的AI系统提供重要工具支持。