无数物联网设备正不断从云端“母舰”处检查丰富数据,而其中使用的强大API接口也迅速成为恶意黑客眼中的攻击目标。于是,API安全再次站在了时代舞台的最中央。
谷歌API安全计划Apigee的出现,令API的整体安全水平迈上新的台阶。而且不仅仅是物联网,流畅丝滑的用户体验设计背后也同样要求机器间数据的无缝对接。只有这样才能以低摩擦方式交换大量数据,将远端分布式响应技术融入到前所未有的精彩体验中来。
但为了让这一切“正常起效”,我们也要考虑到强大接口所引发的恶意攻击可能性。如果不加控制,创纪录的传输能力只会把敏感数据以创纪录的速度传递给恶意黑客。
为此,我们在今年的RSA大会上发表了一篇文章,讨论初创企业正以怎样的方式保障API安全、防止其在悄无声息之下沦为倾泄数据的致命软肋。除我们之外,知名安全媒体DarkReading也打算好好给API安全事件引发的业务损失算笔账。
如今,更多重量级巨头也在进军这一领域,打算将API安全保障塑造成“下一件大事”。谷歌为自家云平台打造的Apigee Advanced API Security,就是想帮助组织客户发现API配置错误并阻止恶意机器人。从之前的记录来看,API配置错误正是多数安全事故的罪魁祸首之一。
好在OWASP API Security Project等工具已经相继出炉,能帮助大家对自己的API或需要交互的API开展健康检查,并以结果作为安全衡量基准。这些工具还深入剖析了常见错误配置及处理方法,相当于给大家提供了良好的保护起点。
而就在企业重视API保护工作的同时,下阶段针对API的黑客攻击也必然迅速增加。而这一波的攻击重点,很可能就是在云和大数据体系中至关重要的工业接口。而一旦这里存在配置错误,将很快导致大量数据被传递至犯罪分子手中,最终引发严重危害。在这场关于安全的军备竞赛中,我们唯一能做的就是避免自己沦为那个受害者。
好文章,需要你的鼓励
清华大学团队突破性开发"零样本量化"技术,让AI模型在不接触真实数据的情况下完成高效压缩,性能反超传统方法1.7%,为隐私保护时代的AI部署开辟新路径。
普林斯顿大学研究团队开发出"LLM经济学家"框架,首次让AI学会为虚拟社会制定税收政策。系统包含基于真实人口数据的工人AI和规划者AI两层,通过自然语言交互找到最优经济政策,甚至能模拟民主投票。实验显示AI制定的税收方案接近理论最优解,为AI参与社会治理提供了新路径。
K Prize是由Databricks和Perplexity联合创始人推出的AI编程挑战赛,首轮比赛结果显示,获胜者巴西工程师Eduardo Rocha de Andrade仅答对7.5%的题目就获得5万美元奖金。该测试基于GitHub真实问题,采用定时提交系统防止针对性训练,与SWE-Bench 75%的最高得分形成鲜明对比。创始人承诺向首个在该测试中得分超过90%的开源模型提供100万美元奖励。
南开大学研究团队提出了一种新的3D高斯泼溅重光照方法,通过在高斯原语上直接编码离散化SDF值,避免了传统方法需要额外SDF网络的问题。该方法设计了投影一致性损失来约束离散SDF样本,并采用球形初始化避免局部最优。实验表明,新方法在保持高质量重光照效果的同时,仅需现有方法20%的显存,显著提升了训练和渲染效率。