微软公司人工智能红队日前发布了一份新的白皮书。白皮书阐述了生成式人工智能系统在安全和安保方面的挑战以及应对新兴风险的策略。
微软人工智能红队成立于 2018 年,旨在应对不断变化的人工智能安全和安保风险。微软人工智能红队的主要工作是识别漏洞和减轻漏洞风险,将传统的安全实践和负责任的人工智能措施相结合。
新白皮书题为“红队测试100款生成式人工智能产品的反思”。白皮书指出,生成式人工智能引入的新漏洞会放大现有的安全风险,降低新漏洞风险需要多方面的应对策略。白皮书提到,应对从传统网络安全缺陷到新型人工智能在内的等各种特定威胁,都需要人类专业知识、持续测试和协作,白皮书强调了这一点的重要性。
白皮书报告详细阐述了三个主要结论,第一个结论是,生成式人工智能系统会放大现有的安全风险和新的风险。白皮书报告发现,生成式人工智能模型引入了新的网络攻击向量,同时放大了现有的漏洞。
在生成式人工智能中,过时的软件组件或不当的错误处理等传统安全风险仍然是关键问题,此外,提示词注入等模型层次的弱点也为人工智能系统带来了独特的挑战。
在一个案例研究中,微软人工智能红队发现某视频处理AI应用中过时的FFmpeg组件导致了服务器端请求伪造攻击,这表明人工智能驱动的解决方案中仍然存在遗留的问题。报告指出,“人工智能红队敏锐察觉新的网络攻击向量,同时对现有的安全风险保持警惕。人工智能安全最佳实践应包括基本的网络卫生措施。”
第二个结论为,人类是改进和保障人工智能安全的核心。第二个结论指出,尽管自动化工具在创建提示词、协调网络攻击和评分响应方面非常有用,但红队工作无法完全自动化,人工智能红队工作严重依赖人类专业知识。
白皮书认为,主题专家在人工智能红队中扮演着至关重要的角色,这些专家能够评估医学、网络安全和化学、生物、放射及核相关等专业领域的内容,而自动化则通常难以胜任这些领域的工作。尽管语言模型可以识别仇恨言论或露骨内容等一般风险,但这些模型难以评估一些特定细微的领域特定问题,因此人工监督对于确保全面的风险评估至关重要。
主要基于英语数据训练的人工智能模型往往无法捕捉不同语言或文化背景下的风险和敏感性。同样,聊天机器人与处于困境中的用户的互动可能导致一些社会心理伤害,探讨这类问题时,要了解这种互动的广泛含义和潜在影响也需要人类的判断。
第三个结论为,深度防御是确保人工智能系统安全的关键。第三个结论指出,要降低生成式人工智能的风险需要采取一种多层次的方法,多层次方法将持续测试、强大的防御措施和自适应策略结合在一起。
白皮书报告指出,虽然缓解措施可以减少漏洞,但无法完全消除风险,因此持续的红队工作是加强人工智能系统的关键组成部分。微软的研究人员表示,企业采取反复识别和解决漏洞等措施可以提高攻击成本,从而威慑对手,并提高人工智能系统的整体安全态势。
好文章,需要你的鼓励
尽管谷歌AlphaFold在2021年带来突破,但医药AI发展正面临数据瓶颈。在BIO 2025大会上,业界领袖指出,AI在蛋白质领域成功源于丰富的历史数据,而临床试验等领域数据稀缺成为主要挑战。医药公司正将AI应用于研发全链条,从靶点识别到临床试验优化,但需要专业团队和数据支撑。行业合作模式也在转变,从服务供应商关系转向深度合作伙伴关系。专家提醒,AI应用需平衡速度与质量,确保程序的严谨性。
哈尔滨工业大学团队开发的Optimus-3是首个在Minecraft环境中具备完整认知能力的AI系统,能够同时处理感知、规划、行动、定位和反思五大任务。该系统采用专家混合架构和任务级路由机制,有效解决了多任务学习中的干扰问题,并通过多模态推理增强强化学习显著提升了视觉相关任务的表现。实验结果显示,Optimus-3在各项任务上均超越了现有最先进系统,为通用人工智能的发展提供了重要技术路径。
随着AI快速重塑商业格局,企业领导者被迫重新审视人性化管理的价值。长期以来,管理者专注于数据优化和效率提升,却忽视了信任、创造力、同理心等人文要素。AI的发展并非威胁人性,而是提供了重新平衡的机会。混合智能结合人工智能与人类智慧,创造出更可持续、创新和可信的结果。领导者需要培养双重素养:既要理解AI技术能力,更要深刻认识人性化管理的独特价值,从而打造真正服务于人类福祉的组织。
香港科技大学团队提出PosterCraft统一框架,通过四阶段训练流程实现高质量美学海报端到端生成。该方法摒弃传统模块化设计,采用整体性创作思路,在文字准确性和视觉美感方面显著超越现有开源模型,接近商业系统水平,为AI创意设计领域带来重要突破。