目前,工业互联网安全形势日趋严峻,而工业企业在安全建设方面普遍存在重视程度不够,投入不足等现象,尤其是“触网”(IT与OT融合)之后,给工业生产环境带来了更大的暴露面安全风险,让原本比较封闭的OT环境完全暴露在IT的安全威胁之下。
而近年来,全球针对工业领域的安全攻击事件频发,其中又以APT攻击和勒索软件攻击为甚,已经对工业互联网安全构成了相当严重的威胁,导致工业企业的生产和经济受损,甚至威胁到了国家的关键基础设施安全,显然目前工业制造行业已经成为APT和勒索病毒攻击的重点目标。
另外,随着公众对数据隐私保护意识的不断增强,以及各地区和国家相继出台有关数据安全的法律法规,今后对工业网络中的数据安全和保护合规要求一定会进一步完善与加强。但工业网络中漏洞数量多、级别高、风险大的现状更加剧了信息泄露的风险,因此,未来在数据安全与合规建设方面也将是工业互联网安全重点建设与投入的方向之一。
同时,如5G、IoT、AI、云计算、大数据等新兴技术的出现,无疑也给工业互联网带来了更多的攻击入口,而新的技术架构和人工智能的应用将让攻击造成的后果更加严重。但同时,我们也看到新技术的应用也为工业互联网的安全防护带来了新的思路和方法。
面对如此复杂的安全形势,工业企业要如何去应对?工业互联网的未来又将何去何从?目前对于这样的问题也是众说纷纭,各家都有自己的理论和方法,但原则是一致的,就是要在满足工业生产业务正常运转的同时,尽可能的减轻安全威胁给工业生产带来的影响,这也是工业互联网目前需要解决的最紧迫的安全问题。
放眼未来,工业互联网安全是否应该建立一种体系化OT安全架构,还是应该从内生安全开始着手构建,或是利用零信任、SASE、AI等先进技术理念与之结合,相信无论哪种方案,都不会脱离安全与业务并存的本质,而让安全与业务实现深度融合,达到协同共生,或许才是未来工业互联网安全发展与建设的最佳路径。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。