目前,工业互联网安全形势日趋严峻,而工业企业在安全建设方面普遍存在重视程度不够,投入不足等现象,尤其是“触网”(IT与OT融合)之后,给工业生产环境带来了更大的暴露面安全风险,让原本比较封闭的OT环境完全暴露在IT的安全威胁之下。
而近年来,全球针对工业领域的安全攻击事件频发,其中又以APT攻击和勒索软件攻击为甚,已经对工业互联网安全构成了相当严重的威胁,导致工业企业的生产和经济受损,甚至威胁到了国家的关键基础设施安全,显然目前工业制造行业已经成为APT和勒索病毒攻击的重点目标。
另外,随着公众对数据隐私保护意识的不断增强,以及各地区和国家相继出台有关数据安全的法律法规,今后对工业网络中的数据安全和保护合规要求一定会进一步完善与加强。但工业网络中漏洞数量多、级别高、风险大的现状更加剧了信息泄露的风险,因此,未来在数据安全与合规建设方面也将是工业互联网安全重点建设与投入的方向之一。
同时,如5G、IoT、AI、云计算、大数据等新兴技术的出现,无疑也给工业互联网带来了更多的攻击入口,而新的技术架构和人工智能的应用将让攻击造成的后果更加严重。但同时,我们也看到新技术的应用也为工业互联网的安全防护带来了新的思路和方法。
面对如此复杂的安全形势,工业企业要如何去应对?工业互联网的未来又将何去何从?目前对于这样的问题也是众说纷纭,各家都有自己的理论和方法,但原则是一致的,就是要在满足工业生产业务正常运转的同时,尽可能的减轻安全威胁给工业生产带来的影响,这也是工业互联网目前需要解决的最紧迫的安全问题。
放眼未来,工业互联网安全是否应该建立一种体系化OT安全架构,还是应该从内生安全开始着手构建,或是利用零信任、SASE、AI等先进技术理念与之结合,相信无论哪种方案,都不会脱离安全与业务并存的本质,而让安全与业务实现深度融合,达到协同共生,或许才是未来工业互联网安全发展与建设的最佳路径。
好文章,需要你的鼓励
这项研究提出了R1-Searcher++框架,通过两阶段训练策略使大语言模型能像人类一样灵活利用内部知识和外部信息。该方法创新性地采用强化学习激励模型优先使用内部知识,并引入记忆机制将检索到的信息转化为内部知识,实现动态知识获取。实验表明,R1-Searcher++不仅在多步问答任务上表现优异,还大幅减少了检索次数,显著提高了推理效率。
这项研究提出了AutoRefine,一种革新性的强化学习框架,为大语言模型引入了"边思考边搜索和完善"的全新范式。与传统方法不同,AutoRefine在连续搜索调用之间添加知识完善步骤,让模型能够有效过滤和组织信息。通过结合答案正确性和检索质量双重奖励,该方法在七项问答基准测试中平均提升6.9%的准确率,特别在复杂多跳推理场景中表现突出,解决了现有检索增强推理的核心局限性。
这项研究揭示了一种新型网络安全威胁:利用普通网络广告攻击AI网页代理。中科院研究团队开发的AdInject攻击无需特殊权限,仅通过精心设计的广告内容就能误导AI代理点击恶意链接,成功率高达90%以上。研究使用严格的黑盒模型,更符合现实场景,暴露了当前AI代理面临的实际安全漏洞。实验还表明,即使添加专门的防御提示,这类攻击仍能成功率超过50%,凸显了设计更强大防御机制的紧迫性。
东北大学与快手科技联合研发的UNITE系统为多模态信息检索带来突破性进展。这项发表于2025年5月的研究首次系统分析了模态特定数据如何影响检索性能,并提出创新的模态感知掩码对比学习技术,有效解决不同模态间的竞争关系。UNITE能同时处理文本、图像、视频及其组合,在40多项测试中超越现有方法,即使与参数规模更大的模型相比也表现出色。研究发现视频-文本对在通用检索中表现优异,而文本-文本和文本-图像对对指令遵循任务至关重要,为未来多模态系统研究提供了宝贵指南。