云杉网络DeepFlow云网分析于2016年底推出,经过持续的演进,目前DeepFlow云网分析的性能和功能日臻完善,整体性能比2019年初的版本提升了10倍,流量采集处理能力已达10Mpps。DeepFlow已在世界500强企业的生产环境中形成“虚拟网络流量采集”、“虚拟网络性能监控”、“虚拟网络策略管理”和“虚拟网络路径诊断”等典型使用场景,解决了大规模虚拟网络环境中,业务的安全和稳定运行难题,帮助客户实现了网络优化、安全事件分析、业务精细化运营等价值,成为企业用好云服务的得力助手。
虚拟网络流量采集
DeepFlow通过与客户云平台&监控平台的对接,实现虚拟网络流量的按需采集、统一存储、高效分发,解决了云环境下虚拟流量的一体化采集难题。
虚拟网络性能监控
在层次复杂的虚拟网络环境中,DeepFlow首先梳理出业务网络的关键路径、并对其流量进行监控,通过对网络指标的异常信息进行实时分析,为业务在虚拟网络中的运行状态提供及时的告警。
虚拟网络策略管理
虚拟网络的灵活性和敏捷性使业务能够频繁变动而无须调整,在企业大规模上云场景中,DeepFlow能自动学习和验证业务和安全策略是否被正确执行,并自动化地为业务生成建议的安全策略,以避免人工操作造成失误,满足企业上云安全、合规的要求。
虚拟网络路径诊断
在不侵扰生产网络、不影响业务连续性的前提下,DeepFlow虚拟网络端到端路径诊断可排查任意IP对、虚拟机、资源组等网元之间的网络连通性问题。
DeepFlow云网分析支持集群部署,支持OpenStack、vSphere虚拟化环境和AWS、腾讯云等公有云环境,目前,DeepFlow已在金融、电信、政务、教育、能源、电力、互联网等行业广泛使用,凭借DeepFlow对虚拟网络技术领先的流量采集、分发和分析能力,帮助用户解决了云端业务的流量采集、性能监控、策略管理、端到端诊断等难题,为客户业务上云提供了有效的支撑。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。