云杉网络DeepFlow云网分析于2016年底推出,经过持续的演进,目前DeepFlow云网分析的性能和功能日臻完善,整体性能比2019年初的版本提升了10倍,流量采集处理能力已达10Mpps。DeepFlow已在世界500强企业的生产环境中形成“虚拟网络流量采集”、“虚拟网络性能监控”、“虚拟网络策略管理”和“虚拟网络路径诊断”等典型使用场景,解决了大规模虚拟网络环境中,业务的安全和稳定运行难题,帮助客户实现了网络优化、安全事件分析、业务精细化运营等价值,成为企业用好云服务的得力助手。
虚拟网络流量采集
DeepFlow通过与客户云平台&监控平台的对接,实现虚拟网络流量的按需采集、统一存储、高效分发,解决了云环境下虚拟流量的一体化采集难题。
虚拟网络性能监控
在层次复杂的虚拟网络环境中,DeepFlow首先梳理出业务网络的关键路径、并对其流量进行监控,通过对网络指标的异常信息进行实时分析,为业务在虚拟网络中的运行状态提供及时的告警。
虚拟网络策略管理
虚拟网络的灵活性和敏捷性使业务能够频繁变动而无须调整,在企业大规模上云场景中,DeepFlow能自动学习和验证业务和安全策略是否被正确执行,并自动化地为业务生成建议的安全策略,以避免人工操作造成失误,满足企业上云安全、合规的要求。
虚拟网络路径诊断
在不侵扰生产网络、不影响业务连续性的前提下,DeepFlow虚拟网络端到端路径诊断可排查任意IP对、虚拟机、资源组等网元之间的网络连通性问题。
DeepFlow云网分析支持集群部署,支持OpenStack、vSphere虚拟化环境和AWS、腾讯云等公有云环境,目前,DeepFlow已在金融、电信、政务、教育、能源、电力、互联网等行业广泛使用,凭借DeepFlow对虚拟网络技术领先的流量采集、分发和分析能力,帮助用户解决了云端业务的流量采集、性能监控、策略管理、端到端诊断等难题,为客户业务上云提供了有效的支撑。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。