云杉网络DeepFlow云网分析于2016年底推出,经过持续的演进,目前DeepFlow云网分析的性能和功能日臻完善,整体性能比2019年初的版本提升了10倍,流量采集处理能力已达10Mpps。DeepFlow已在世界500强企业的生产环境中形成“虚拟网络流量采集”、“虚拟网络性能监控”、“虚拟网络策略管理”和“虚拟网络路径诊断”等典型使用场景,解决了大规模虚拟网络环境中,业务的安全和稳定运行难题,帮助客户实现了网络优化、安全事件分析、业务精细化运营等价值,成为企业用好云服务的得力助手。
虚拟网络流量采集
DeepFlow通过与客户云平台&监控平台的对接,实现虚拟网络流量的按需采集、统一存储、高效分发,解决了云环境下虚拟流量的一体化采集难题。
虚拟网络性能监控
在层次复杂的虚拟网络环境中,DeepFlow首先梳理出业务网络的关键路径、并对其流量进行监控,通过对网络指标的异常信息进行实时分析,为业务在虚拟网络中的运行状态提供及时的告警。
虚拟网络策略管理
虚拟网络的灵活性和敏捷性使业务能够频繁变动而无须调整,在企业大规模上云场景中,DeepFlow能自动学习和验证业务和安全策略是否被正确执行,并自动化地为业务生成建议的安全策略,以避免人工操作造成失误,满足企业上云安全、合规的要求。
虚拟网络路径诊断
在不侵扰生产网络、不影响业务连续性的前提下,DeepFlow虚拟网络端到端路径诊断可排查任意IP对、虚拟机、资源组等网元之间的网络连通性问题。
DeepFlow云网分析支持集群部署,支持OpenStack、vSphere虚拟化环境和AWS、腾讯云等公有云环境,目前,DeepFlow已在金融、电信、政务、教育、能源、电力、互联网等行业广泛使用,凭借DeepFlow对虚拟网络技术领先的流量采集、分发和分析能力,帮助用户解决了云端业务的流量采集、性能监控、策略管理、端到端诊断等难题,为客户业务上云提供了有效的支撑。
好文章,需要你的鼓励
OpenAI在最新博客中首次承认,其AI安全防护在长时间对话中可能失效。该公司指出,相比短对话,长对话中的安全训练机制可能会退化,用户更容易通过改变措辞或分散话题来绕过检测。这一问题不仅影响OpenAI,也是所有大语言模型面临的技术挑战。目前OpenAI正在研究加强长对话中的安全防护措施。
北航团队推出VoxHammer技术,实现3D模型的精确局部编辑,如同3D版Photoshop。该方法直接在3D空间操作,通过逆向追踪和特征替换确保编辑精度,在保持未修改区域完全一致的同时实现高质量局部修改。研究还创建了Edit3D-Bench评估数据集,为3D编辑领域建立新标准,展现出在游戏开发、影视制作等领域的巨大应用潜力。
谷歌宣布计划到2026年底在弗吉尼亚州投资90亿美元,重点发展云计算和AI基础设施。投资包括在里士满南部切斯特菲尔德县建设新数据中心,扩建现有设施,并为当地居民提供教育和职业发展项目。弗吉尼亚州长表示这项投资是对该州AI经济领导地位的有力认可。此次投资是谷歌北美扩张战略的一部分。
宾夕法尼亚大学研究团队开发出PIXIE系统,这是首个能够仅通过视觉就快速准确预测三维物体完整物理属性的AI系统。该技术将传统需要数小时的物理参数预测缩短至2秒,准确率提升高达4.39倍,并能零样本泛化到真实场景。研究团队还构建了包含1624个标注物体的PIXIEVERSE数据集,为相关技术发展奠定了重要基础,在游戏开发、机器人控制等领域具有广阔应用前景。