至顶网网络频道 02月27日 编译:借助科技巨头思科和诺基亚的硬件和软件,日本乐天(Rakuten)宣布将在短短八个月内推出自己的移动网络。计划于10月推出的Rakuten Mobile Network将成为全球首个完全虚拟化的、基于云的移动网络。
本周在巴塞罗那举行的世界移动通信大会(MWC)上,思科全球移动和5G部门总监Bob Everson表示,该部署将采用思科的虚拟化架构。
Everson说:“这是一个绿色部署,是全新的,因此从一开始就能决定他们想要如何实现这一点,所以这是一种非常创新的方法,是一个完全虚拟化的、基于云的网络。”
思科还在MWC上宣布其Unified Domain Center (UDC) 是“DNA和移动之间的桥梁”,而且思科正在横跨其云、IT和服务提供商组合向Rakuten部署租赁路由和交换软硬件。
此外,思科还将在工程、安全、运营和多供应商系统集成方面提供专家资源。部署之后,其网络中将包括一个具有多访问边缘计算的完全虚拟化网络、软件定义网络、集中和区域数据中心能力,以及全面的服务和基础设施自动化能力。
Rakuten移动网络首席技术官Tareq Amin表示,Rakuten的网络将是“软件驱动的,从上到下实现自动化”。
“通过这种设计方法,我们与思科以及精心挑选的供应商生态系统展开合作,我们相信能够以更低的成本提供高价值的服务,帮助我们的客户分享云创新的真正好处,”Amin说。
据Amin称,与传统移动运营商相比,这种基于云的虚拟化方法将让Rakuten至少节省35%的运营成本。
Everson解释说,“通常情况下,RAN或多或少是一个单一的系统,部署在那里,软件和硬件集成在一起,随着我们向虚拟化迈进,这个行业将重塑通往这个目标的道路。”
“这是一个完全虚拟化的网络,基于思科的电信云、编排技术。”Everson表示,当Rakuten第一次表示打算构建移动网络的时候,许多业内人士都不知道该怎么做。“现在我们所展示的是,他们在蜂窝站点只需要拥有无线电和天线设备就行了,”
“真正的处理流程并不是在这里发生的,所以只需要让一个建筑工作人员,而不是高级别的技术人员去那里挂天线,基本上就是即插即用,所以他们接入电缆,并反馈到OSS,OSS说,‘我知道你’,启动我们的编排系统,将RAN软件推送到边缘云节点,这有4000个边缘云节点,全部都是基于思科虚拟化技术的,将软件推送到那里,调出所有无线电软件,连接到天线并启动网络,实际上这个过程只需要几分钟的时间,而不是之前的好几天。”Everson解释到。
“Rakuten远远超出了概念证明,这是一个真正的现场网络,他们正在积极推进这种技术。”据思科称,这个移动网络还将支持5G,具有支持5G的IPv6传输和移动回程。
诺基亚CTO:Web级企业是移动网络的未来吗?
诺基亚CTO Marcus Weldon在采访中表示,诺基亚正在为Rakuten提供无线硬件以及端到端的系统集成。“因为他们没有任何自己的基站,所以他们决定直接使用云原生的RAN,而不是采用传统放在塔底的基站。”
“他们租用塔式空间放置无线电,然后回程,但他们不想使用机柜、基带,因此他们选择了云原生,这是他们的第一次。”Weldon表示。
诺基亚也在5G方面与Rakuten展开合作,但表示目前还是采用LTE。据Weldon说,Rakuten案例中最有意思的部分是这家Web级公司向移动网络领域的转型。
Weldon称,“他们身处无线电业务领域,这让他们可以完善他们的Web平台。所以他们是Web级的,但之前没有Web级的企业构建移动网络。Web级构是移动网络的未来吗?Rakuten是第一个尝试这么做的企业。”
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。