Achronix日前宣布为其eFPGA IP解决方案推出Speedcore custom blocks定制单元块。Achronix Speedcore eFGPA嵌入式FPGA可加速数据密集的人工智能(AI)/机器学习、5G移动通信、汽车先进驾驶员辅助系统(ADAS)、数据中心和网络应用。
据悉,Speedcore custom blocks定制单元块可以大幅度地提升性能、功耗和面积效率,并支持以前在FPGA独立芯片上无法实现的功能。利用Speedcore custom blocks定制单元块,客户可以获得ASIC级的效率并同时保持FPGA的灵活性,从而带来了一种可以将功耗和面积降至最低、同时将数据流通量最大化的高效实现方式。
随着新一波智能数据密集型应用的兴起,基于传统的CPU架构已经无法满足这些新应用中计算需求的指数级增长,推动了对全新的、异构的、带有可编程硬件加速器的计算架构的需求。Speedcore eFPGA提供了性能最高而成本最低的硬件加速,而现在借助Speedcore custom blocks定制单元模块,过去在独立FPGA运算结构中运行缓慢且消耗大量资源的功能,都可以面向最高性能和最小片芯面积这些目标进行优化。从以下案例可以了解详情:
“业界领袖对Speedcore custom blocks定制单元块及其可发挥的潜力倍感兴奋,”Achronix Semiconductor市场营销副总裁Steve Mensor表示。“目前与我们合作的公司都在打造下一代异构计算平台和高带宽通信系统,他们正在构建高性能的硬件加速器,可以随着其计算算法的演进而不断调整。现在,Achronix eFPGA IP产品在添加了Speedcore custom blocks定制单元块以后,就使其在拥有可编程性的同时还能够拥有ASIC级的性能以及高片芯面积效率。”
Speedcore Custom Blocks定制单元块的定义过程
Speedcore custom blocks定制单元块由Achronix与其客户共同定义,这需要一个详细的加速工作负载架构分析,作为性能和/或面积瓶颈的重复性功能被评估为潜在目标,有可能被硬化而进入Speedcore custom blocks定制单元块。随后,Achronix将为客户提供一个用于基准测试和评估的新版ACE设计工具,它包含了带有定制单元块的、新的Speedcore eFPGA。根据需求,该过程可以被多次迭代,为客户的系统创建优化的解决方案。
ACE设计工具提供的支持
Achronix的ACE设计工具全面支持Speedcore custom blocks定制单元块,可以与存储器和DSP单元块相同的方式,提供从设计捕获到比特流生产和系统调试等功能。Achronix为每个Speedcore custom blocks定制单元块创建了一种独有图形化用户接口(GUI),它可以管理所有的配置规则。
ACE拥有Speedcore custom blocks定制单元块所有配置的完整的时序细节,支持ACE去完成各种设计基于时序的布局和布线。客户可以用强大的版图规划器来优化设计,并为所有的单元实例去制定局域或者定点的任务安排。ACE还包括一个关键路径分析工具,它可以支持客户去分析时序。客户还可以使用ACE强大的Snapshot嵌入式逻辑分析仪,去创建复杂的触发器并展示Speedcore内的实时信号。
好文章,需要你的鼓励
这项由索非亚大学INSAIT和苏黎世联邦理工学院共同完成的研究,揭示了大语言模型在数学定理证明中普遍存在的"迎合性"问题。研究团队构建了BrokenMath基准测试集,包含504道精心设计的错误数学命题,用于评估主流AI模型能否识别并纠正错误陈述。
约翰斯·霍普金斯大学研究团队提出了创新的隐私保护AI文本生成方法,通过"控制代码"系统指导AI生成虚假敏感信息来替代真实数据。该方法采用"藏身于众"策略,在医疗法律等敏感领域测试中实现了接近零的隐私泄露率,同时保持了高质量的文本生成效果,为高风险领域的AI应用提供了实用的隐私保护解决方案。
实验室和真实使用测试显示,iPhone Air电池续航能够满足一整天的典型使用需求。在CNET进行的三小时视频流媒体压力测试中,iPhone Air仅消耗15%电量,表现与iPhone 15相当。在45分钟高强度使用测试中表现稍逊,但在实际日常使用场景下,用户反馈iPhone Air能够稳定支撑全天使用,有线充电速度也比较理想。
这项由Reactive AI提出的稀疏查询注意力机制通过减少查询头数量而非键值头数量,直接降低了注意力层的计算复杂度,实现了2-3倍的训练和编码加速。该方法在长序列处理中表现出色,在20万词汇序列上达到3.5倍加速,且模型质量损失微乎其微,为计算密集型AI应用提供了新的优化路径。