11月9日-10日,2017中国物联网大会首次落地我国重要的物联网产业基地——福州。作为国内物联网领域规模最大、层次最高、影响力最大的行业盛会,本次大会吸引了上万人前来参展交流。锐捷网络携场景化物联网方案精彩亮相,全方位展示了作为中国数据通信解决方案领导品牌的实力和风采。
随着云计算、大数据、人工智能的快速发展,万物互联的时代全面开启。如今,伴随智能设备的普及应用,人们对于网络的需求越来越复杂,万物互联即将引领一场全新的技术革命。在本次大会中,锐捷网络从细分行业的场景应用出发,展示了基于NB-IoT和LoRa的广域物联网智慧城市解决方案、智慧校园、医疗智能输液、婴儿安全以及资产定位、能效监控等新方案,吸引了众多观众的目光。
以“智慧”发力医疗物联网
在物联网技术的助推下,智慧医院、互联网+医疗、移动医疗、远程医疗在医疗行业开始崭露头角,逐步进入实际应用。锐捷网络应势推出医疗物联网解决方案,面向医疗行业应用,通过室内物联网基站、IOTP物联平台,收集和处理各种物联网业务数据,实现对医院人员、资产、婴儿的精准定位和互联,支撑医院婴儿防盗、移动遥测、资产定位等职能化创新业务的发展,构建智能化的医疗健康业务平台,全面提升医疗服务质量。
在资产管理业务方面,锐捷网络推出了资产管理解决方案,通过广域物联网技术解决数据传输的问题,只需少量的基站就能实现全院覆盖。该方案主要由标签、基站、支持第三方接口的物联网管理平台和资产管理业务后台构成,实现了全院级资产管理。
物联应用点亮智慧校园
在教育行业,锐捷网络推出了教育物联网解决方案,将科技创新全方位融入到孩子们的学习、运动、健康和安全中,让老师和家长都能更省心、更放心。
该方案利用最新的物联网技术,通过锐捷网络IOTP物联网平台分析手环采集的考勤、运动、健康、位置和行为数据,为学校提供终端、接入、平台和应用的整体解决方案,有效解决学生安全、学生健康等业务无有效监控预警的问题,从而提升学校教学和管理的效率。
面对繁多且重要的学校资产,锐捷网络将广域物联网和近场物联网结合,重新定义了资产管理。该方案不仅可以通过固定式标签管理可移动的高价值资产,并且可以用电流标签统计各类高价值实验仪器设备的实际利用率。
依托广域物联网技术布局智慧城市
在更广袤辽阔的城市空间,锐捷网络推出了基于NB-IoT和LoRa的广域物联网智慧城市解决方案,重点应用于智慧城市、智能抄表、制造业和电力能源的数据采集控制等场景。具备超大覆盖半径,同时解决了复杂环境或野外环境的建网难题,大幅减少无线通讯网络建设成本。
目前,该方案已经可以在远程抄表、环境数据采集、智慧市政等诸多场景成熟商用,并得到市场和用户的高度认可。在更精准的细分场景里,锐捷网络同样推出了多套各具特色的物联网解决方案,例如针对城市中车位难寻、停车不规范引起交通拥堵问题,推出了智能道路停车解决方案。
全面发力物联网场景化创新成亮点
物联网的发展需要整个行业的共同努力。目前,锐捷网络已经在政府、交通、商贸、酒店、住宅、能源、制造业等多个领域都开展了物联网的方案研究和试点,将技术真正应用到行业并基于场景进行创新,脚踏实地推动物联网发展。
(图:锐捷网络物联网发展战略)
未来,锐捷网络还将继续加大物联网应用创新,将“人、物、网”融为一体,发挥广域物联网和近场物联网各自优势,通过RG-IOTP的统一物联网平台,实现不同物联网协议数据的统一上收,并和各类业务系统实现对接,最终形成一个弹性、可扩展、可持续发展的物联网架构。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。