刚刚过去的周末,周围几乎所有的亲朋好友以及同事们都或多或少的参与了一下这个年度购物狂欢节。甚至我在北美的同事也会惊呼现在的“Single’s Day”已经不亚于“Black Friday”和“Cyber Monday”的影响力。而从技术的角度讲,这样集中且高密度的客户访问流量,对任何一家电商的基础设施来说都是巨大的挑战。我的一位负责技术营销的同事Golan Shem-Tov跟我分享了一些他的有趣经历。
Golan回忆道:其实,在几年前,当我刚开始接触应用性能管理(APM)的时候,我就有幸亲身经历了一次类似网络购物狂潮的事件。随着客户流量的激增,当我走回自己办公桌的时候,看到运维团队的一位同事正面露难色的看着他的电脑屏幕,因为屏幕上的图标颜色由绿变成了橙色,有的甚至变成了红色。他看着我,然后说道:‘看着就像圣诞夜的彩灯,一个漫漫长夜就要来啦’。
今天,当我看着我们为年底购物季所准备的合成监测系统正在变换颜色时,我不禁想到了过去的情形。我们使用的这些合成监测系统很简单,监测的这些网站也是我的朋友和家人经常去购物的网站。由购物高峰所带来的结果也都很值得关注。
这里有几个关于在某个“网购星期一”网络可用性和最大响应时间的例子,非常有趣。这里隐去网站的名称以便于通用业务描述:
从上图,我们发现了一些有趣的问题,比如某个店铺的站点经常出现超时故障:
另一家百货店的平均响应时间超长,请求超时,响应时间高达54秒:
还有一家服装店存在HTTP 503错误和超时现象:
我相信很多人都为此长时间忙碌过,甚至是熬夜加班,而我们每年都会看到或听到类似的新闻,这种现象在过去几年一直都有,但是不是就真的没办法解决?
答案是否定的,根据目前业界普遍达成的共识,经过市场验证的综合应用性能监测系统应该具备以下能力:
时代已经改变,越来越多的电商企业需要找到既可以探测并预警问题、又可以帮助企业快速诊断问题,并缩短解决问题时间且减少财务损失的综合解决方案。为了确保下一个“双11”网络交易平台的正常运营并超越竞争对手,现在就开始行动吧!
好文章,需要你的鼓励
Liquid AI发布了新一代视觉语言基础模型LFM2-VL,专为智能手机、笔记本电脑和嵌入式系统等设备高效部署而设计。该模型基于独特的LIV系统架构,GPU推理速度比同类模型快2倍,同时保持竞争性能。提供450M和1.6B两个版本,支持512×512原生分辨率图像处理,采用模块化架构结合语言模型和视觉编码器。模型已在Hugging Face平台开源发布。
AIM Intelligence联合多所知名大学揭示了音频AI系统的重大安全漏洞,开发出名为WhisperInject的攻击方法。这种攻击能让看似无害的音频指令操控AI生成危险内容,成功率超过86%,完全绕过现有安全机制。研究暴露了多模态AI系统的系统性安全风险,对全球数十亿智能设备构成潜在威胁。
阿里团队推出首个AI物理推理综合测试平台DeepPHY,通过六个物理环境全面评估视觉语言模型的物理推理能力。研究发现即使最先进的AI模型在物理预测和控制方面仍远落后于人类,揭示了描述性知识与程序性控制间的根本脱节,为AI技术发展指明了重要方向。
新加坡国立大学研究团队系统梳理了视觉强化学习领域的最新进展,涵盖超过200项代表性工作。研究将该领域归纳为四大方向:多模态大语言模型、视觉生成、统一模型框架和视觉-语言-动作模型,分析了从RLHF到可验证奖励范式的政策优化策略演进,并识别出样本效率、泛化能力和安全部署等关键挑战,为这一快速发展的交叉学科提供了完整的技术地图。