在上一篇文章“主流公有云产品功能性分析”中,我们对这些云主机厂商自身发布的功能性指标进行了一次简单的分析对比。而公有云主机的实际应用性能,还是无法从中进行体现。为此至顶网又策划了本次国内主流公有云主机的网络应用性能测试活动。在本次活动中,至顶网同样选择的是对阿里云、百度云、腾讯云和青云这几家主流云计算厂商的公有云产品进行评测。
网络应用性能测试,是通过模拟真实的网络应用请求,对网络产品的实际网络应用处理能力进行评测。通过网络应用测试,应该可以完全真实的评估出网络产品在现实应用中的实际应用情况。当前全球主流的网络应用性能测试仪表提供商,有思博伦和IXIA两家。
早在十几年前,这两个厂商就开始向网络及网络安全厂商提供网络应用性能的测试解决方案。当云计算、SDN/NFV技术兴起后,思博伦和IXIA公司也相应推出了针对虚拟化产品的网络应用性能测试产品。
在本次测试初期,也曾规划将他们推出的虚拟化网络应用测试工具安装到本次测试的云主机之中。(可参见“公有云主机网络应用性能公开测试方案”)从而可以对“应用请求处理速率”、“应用请求响应时延”、“并发用户数”、“应用流量”这些应用性能评估的关键指标进行最直接的评测。
然而理想很丰满,现实太骨感。在经过了多次尝试之后,这两款软件在云主机上的安装还是以失败告终。无奈之下,只能退而求其次,采用在Linux上使用的Netperf工具完成本次测试工作。
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。