在上一篇文章“主流公有云产品功能性分析”中,我们对这些云主机厂商自身发布的功能性指标进行了一次简单的分析对比。而公有云主机的实际应用性能,还是无法从中进行体现。为此至顶网又策划了本次国内主流公有云主机的网络应用性能测试活动。在本次活动中,至顶网同样选择的是对阿里云、百度云、腾讯云和青云这几家主流云计算厂商的公有云产品进行评测。
网络应用性能测试,是通过模拟真实的网络应用请求,对网络产品的实际网络应用处理能力进行评测。通过网络应用测试,应该可以完全真实的评估出网络产品在现实应用中的实际应用情况。当前全球主流的网络应用性能测试仪表提供商,有思博伦和IXIA两家。
早在十几年前,这两个厂商就开始向网络及网络安全厂商提供网络应用性能的测试解决方案。当云计算、SDN/NFV技术兴起后,思博伦和IXIA公司也相应推出了针对虚拟化产品的网络应用性能测试产品。
在本次测试初期,也曾规划将他们推出的虚拟化网络应用测试工具安装到本次测试的云主机之中。(可参见“公有云主机网络应用性能公开测试方案”)从而可以对“应用请求处理速率”、“应用请求响应时延”、“并发用户数”、“应用流量”这些应用性能评估的关键指标进行最直接的评测。
然而理想很丰满,现实太骨感。在经过了多次尝试之后,这两款软件在云主机上的安装还是以失败告终。无奈之下,只能退而求其次,采用在Linux上使用的Netperf工具完成本次测试工作。
好文章,需要你的鼓励
Y Combinator合伙人Ankit Gupta与Anthropic预训练负责人Nick Joseph最近进行了一次深度对话。
微软研究院提出潜在分区网络(LZN),首次实现生成建模、表示学习和分类任务的真正统一。该框架通过共享高斯潜在空间和创新的潜在对齐机制,让原本独立的AI任务协同工作。实验显示LZN不仅能增强现有模型性能,还能独立完成各类任务,多任务联合训练效果更是超越单独训练。这项研究为构建下一代通用AI系统提供了新的架构思路。
9月13日的PEC 2025 AI创新者大会暨第二届提示工程峰会上,“年度提问二:新工作时代:AI工作流由谁主导?”从企业实践到技术实现、从业务落地到战略决策,展开了一场高密度的思想碰撞与经验分享,将AI工作流背后的难题和解决路径彻底揭开。
上海AI实验室开发的VLAC模型让机器人首次具备真实世界自主学习能力。该系统如同给机器人配备智能导师,能实时评估动作效果并从中学习。在四个操作任务测试中,机器人成功率从30%提升至90%,仅需200次练习。技术结合视觉、语言理解和动作生成,支持跨场景适应和人机协作,为家庭服务、医疗护理等领域应用奠定基础。