在上一篇文章“主流公有云产品功能性分析”中,我们对这些云主机厂商自身发布的功能性指标进行了一次简单的分析对比。而公有云主机的实际应用性能,还是无法从中进行体现。为此至顶网又策划了本次国内主流公有云主机的网络应用性能测试活动。在本次活动中,至顶网同样选择的是对阿里云、百度云、腾讯云和青云这几家主流云计算厂商的公有云产品进行评测。
网络应用性能测试,是通过模拟真实的网络应用请求,对网络产品的实际网络应用处理能力进行评测。通过网络应用测试,应该可以完全真实的评估出网络产品在现实应用中的实际应用情况。当前全球主流的网络应用性能测试仪表提供商,有思博伦和IXIA两家。
早在十几年前,这两个厂商就开始向网络及网络安全厂商提供网络应用性能的测试解决方案。当云计算、SDN/NFV技术兴起后,思博伦和IXIA公司也相应推出了针对虚拟化产品的网络应用性能测试产品。
在本次测试初期,也曾规划将他们推出的虚拟化网络应用测试工具安装到本次测试的云主机之中。(可参见“公有云主机网络应用性能公开测试方案”)从而可以对“应用请求处理速率”、“应用请求响应时延”、“并发用户数”、“应用流量”这些应用性能评估的关键指标进行最直接的评测。
然而理想很丰满,现实太骨感。在经过了多次尝试之后,这两款软件在云主机上的安装还是以失败告终。无奈之下,只能退而求其次,采用在Linux上使用的Netperf工具完成本次测试工作。
好文章,需要你的鼓励
萨提亚回忆起90年代在微软评审会上听到的场景。Gates当时说:"软件只有一个品类--信息管理。
MiroMind AI等机构联合研究团队提出了UniME-V2多模态嵌入学习新方法,通过让大型多模态语言模型充当"智能法官"来评估训练样本质量,解决了传统方法在负样本多样性和语义理解精度方面的问题。该方法引入软标签训练框架和困难负样本挖掘技术,在MMEB基准测试中取得显著性能提升,特别在组合式检索任务上表现出色,为多模态AI应用的准确性和用户体验改进提供了重要技术支撑。
Anthropic周一发布了旗舰模型Opus 4.5,这是4.5系列的最后一个模型。新版本在编程、工具使用和问题解决等基准测试中表现出色,是首个在SWE-Bench验证测试中得分超过80%的模型。同时推出Claude for Chrome和Claude for Excel产品,分别面向不同用户群体。Opus 4.5还改进了长文本处理的内存管理,支持付费用户的"无限聊天"功能,并针对智能体应用场景进行了优化,将与OpenAI的GPT 5.1和谷歌的Gemini 3展开竞争。
南洋理工大学团队开发了Uni-MMMU基准测试,专门评估AI模型的理解与生成协同能力。该基准包含八个精心设计的任务,要求AI像人类一样"边看边想边画"来解决复杂问题。研究发现当前AI模型在这种协同任务上表现不平衡,生成能力是主要瓶颈,但协同工作确实能提升问题解决效果,为开发更智能的AI助手指明了方向。