至顶网网络频道 11月07日 综合消息:Mellanox公司的下一代Innova网络适配器不仅将整合强制性高速接口,同时亦将嵌入一块Xilinx FPGA芯片。
分流工作负载已经成为Mellanox适配器发展策略中的一项重要组成部分,而这显然也迎合了一部分客户的需求——正因为如此,FPGA的加入也变得顺理成章。
该公司高级营销主管Bob Doud在接受采访时解释称,即将推出的这款Innova-2适配器进一步扩展了“将对主机CPU不友好的软件负载的分流能力,通过在FPGA内加速不同功能实现网络功能提速。”
这款全新适配器将Mellanox ConnectX-5与Xilinx Kintex超大规模FPGA加以结合,且提供配置选项以加速主机应用或者网络应用。
通过配置,各板载连接机制——包括网络接口、RDMA以及PCIe——将能够实现主机加速(‘旁观’)或网络加速(‘线路内对冲’)等效果。
在线路内对冲场景下,来自以太网接口的流量将被传递至FPGA以实现网络分流,而后被交付至ConnectX-5系统芯片处,最后才抵达主机。在旁观配置下,流量则首先由该系统芯片处理,随后主机加速工作负载流量被进一步传递至FPGA处。
网上上的PCI交换机同样可以进行两路拆分。
另外,这款设备还支持OpenCAPI(即连续加速器处理器接口),Doud解释称这是为了获得IBM等行业领先厂商的支持。
“OpenCAPI是一种直接接入处理器的处理方式——能够对接IBM的Power9计算架构。这是一种经过改进的总线,类似于PCI Express——但PCIe并不属于连续接口。”
“我们的连接运行有8条通道,每条通道提供25 Gbps速率,因此其峰值数据吞吐量为200 Gbps。除去性能损耗,我们由处理器到FPGA的传输能力在160到170 Gbps之间……这意味着用户能够将一些非常重要的负载分流至FPGA处。”
这款网卡将提供两个版本,分别支持双25 Gbps以太网接口或双100 Gbps接口配置——后者可体现为200 Gbps纯以太网接口或100 Gbps以太网接口加100 Gbps Infiniband接口的形式。
Doud同时指出,以太网加Infiniband的组合也意味着用户可以对这款网卡进行编程,从而在企业内部的以太网与Infiniband存储基础设施之间提供高效桥接。
IPSec与TLS等安全应用对于内联处理体系而言必不可少,亦可用于处理DDoS以及防火墙工作负载。Mellanox公司已经将这类需求纳入发展路线图,而FPGA则能够在未来提供更显著的速度表现与编程性水平。
在旁观类工作负载方面,该公司希望能够在市场上建立起明确的客户吸引力。根据Doud的说法,其中主要包括机器学习、刚刚起步的FPGA即服务业务、区块链加速、搜索优化以及分析等等。
Innova-2网卡还将适用于存储加速场景,Doud指出其将在NVMe架构当中处理压缩与重复数据删除等常见工作负载。
当然,将FPGA引入网卡还能够帮助用户省去构建超大规模环境时所必要的时间投入。
FPGA编程
Doud表示,虽然Mellanox公司目前正在提供一系列FPGA应用以作为预设定功能(例如安全加速),但该公司亦希望拥有FPGA技术能力的客户自己动手以发挥更大的“魔力”。
Xilinx的工具包与开发套件将随这款适配器一同提供,客户亦可联系Xilinx公司生态系统内各合作伙伴以寻求更为广阔的施展空间。
根据Doud的解释,一部分Mellanox知识产权将以“垫片”的方式交付给开发人员。
“以以太网端口为例。大家可以从Xilinx处获得PHY与MAC层,而Mellanox公司则在此之后提供知识产权以实现您在ConnectX中能够找到的各类功能,具体包括负载分流以及数据包处理等等。”
同样的,PCIe MAC层将由Xilinx公司提供,而Mellanox方面则提供部分DMA引擎(例如处理数据移动),“这样客户将无需重新实现基础传输管道。”
尽管该公司并没有转型为服务厂商的雄心壮志,但其仍然组建起一支由FPGA工程师构成的团队,负责帮助客户“掌握电路板与系统相关专业知识”。
好文章,需要你的鼓励
随着AI广泛应用推动数据中心建设热潮,运营商面临可持续发展挑战。2024年底美国已建成或批准1240个数据中心,能耗激增引发争议。除能源问题外,服务器和GPU更新换代产生的电子废物同样严重。通过采用模块化可修复系统、AI驱动资产跟踪、标准化数据清理技术以及与认证ITAD合作伙伴合作,数据中心可实现循环经济模式,在确保数据安全的同时减少环境影响。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
超大规模云数据中心是数字经济的支柱,2026年将继续保持核心地位。AWS、微软、谷歌、Meta、甲骨文和阿里巴巴等主要运营商正积极扩张以满足AI和云服务需求激增,预计2026年资本支出将超过6000亿美元。然而增长受到电力供应、设备交付和当地阻力制约。截至2025年末,全球运营中的超大规模数据中心达1297个,总容量预计在12个季度内翻倍。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。