在思科宣布计划收购BroadSoft之后,有合作伙伴敦促思科公布更多关于渠道战略和这次收购对利润和统一通信即服务(UCaaS)销售的潜在影响等更多细节。
NexCloud是Ubisec Systems公司的云服务部门,同时也是思科的合作伙伴,NexCloud首席架构师Edward Sohn表示:“问题是,对于我们这样了解托管模式,知道来自OEM或者厂商的直接模式可以让云模式更加奏效的UCaaS提供商来说,现在,从某种程度上来说,我们和思科是竞争的关系。”
有合作伙伴表示,BroadSoft将让思科旗舰的Spark平台变得更加可访问、可扩展,同时也在一个新的客户群体中扩大市场份额。“但令人担忧的是,思科将如何在一个面向渠道的市场中运用这一策略和这种类型的服务产品?我们现在可以售卖BroadSoft产品,但是BroadSoft的优势一直是与众多大型电信提供商合作。然后这些电信提供商再面向中小企业和大型企业进行售卖。我们无法触及这个市场,因为这一直都是由大型电信提供商控制着的”
一位来自解决方案提供商、思科金牌合作伙伴的高管表示,他很担心他在托管语音产品以及Cisco Hosted Collaboration Solution (HCS)上的投资是否会付诸东流。
这位不愿意透露姓名的高管还表示:“很多合作伙伴开发了大量专业服务构建这些内部部署的架构。如果这些都不存在了,我们该怎么办?我们已经在CCIE语音上做的投资该怎么办?未来我们在CCIE协作方面的同事该怎么办……更重要的是,我们怎么从中赚钱,保持利润?”
有合作伙伴表示,思科需要解释一下自己的UCaaS战略,以及BroadSoft解决方案将如何与思科新推出的Spark Flex Plan相结合。
有解决方案提供商正在敦促思科不要等到下周思科的合作伙伴峰会才公布与BroadSoft相关的市场战略。
“现在思科已经收购了BroadSoft,把产品组合扩展到中小企业。你需要告诉渠道合作伙伴,‘我们已经投资了HCS或者你自己的多租户协同解决方案——我们的平台将让你同样可以从服务中盈利,同样可以从订阅中得到利润,只是你不需要应对硬件和永久性许可’。思科需要向合作伙伴做清晰的说明,”这位思科金牌合作伙伴高管表示。
“如果我们有一个现有的客户,我们为什么要从Spark或者思科的什么平台上迁移到BroadSoft,放弃我们的利润?思科需要和合作伙伴谈一谈,确保在盈利和折扣计划上是双方一致的,这样现有的合作伙伴就不会受到这次收购的影响。”
思科预计将在2018年第一季度完成对BroadSoft近19亿美元的收购。
BroadSoft称自己是云PBX、统一通信、团队协作和联络中心解决方案的领导者。BroadSoft的云业务应用和平台在80个国家450多个服务提供商提供给客户,目前BroadSoft有超过1900万商业用户。
像AT&T和Verizon这样的电信巨头都已经整合了BroadSoft的平台,以提供他们自己的解决方案和服务。例如,Verizon的One Talk和AT&T的Collaborate就使用了BroadSoft的多租户平台BroadWorks。
Sohn表示:“对于思科来说,这可以确保把Spark植入更广泛的市场中,通过BroadSoft覆盖更多客户群体,因为BroadSoft通过像Verizon和AT&T这样的大型电信提供商与中小企业合作。你必须做一些变革来实现扩张,但同样的,我们现在在考虑思科是否在某些方面与我们形成竞争关系。”
思科在一则声明中表示,将把BroadSoft的开放接口、基于标准的云语音、通过服务提供商合作伙伴提供的联络中心解决方案与思科的会议、硬件和服务产品组合整合。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。