随着铁路的高速发展,对于安全性、可靠性提出了更高的要求,列车的安全高效行驶不仅依赖列控系统,更依赖准确、有效的信息获取和风险预警,包括列车及沿线的人员、设备、环境信息。如何将车上的信息稳定、可靠的传递到地面,实现大数据回传,是目前铁路机务系统面临的一个很重要问题。但同时,现有技术手段有限,机务数据目前更多是人工拷贝方式,效率低下;采用传统的WI-FI覆盖方案,存在覆盖能力弱、易受干扰、终端并发数量小,无法漫游切换,数据无法稳定传输等问题。
近日,神州高铁与华为携手,利用神州高铁自主知识产权的国家973项目“智慧协同”专利技术及华为eLTE-U技术,成功研发多通道大数据无线传输系统,实现了机务段范围内车载机务大数据的自动、稳定回传。
该系统是为解决轨道交通领域中用户对机车、车辆车载视频数据自动下载的迫切需求而设计的一种集中式网络通信系统。系统采用先进的数据算法,合理分配网络通道,智慧协同多个无线链路并行对视频数据进行传输,从而实现机车、车辆进入站场时,车载设备自动连接、高速传输、行驶至下一基站时系统自动切换等功能,最大程度地优化了车载大数据传输工作的效率和质量。
相比于传统数据传输依靠人工转储数据效率低下、易受病毒干扰的弊端,神州高铁研发的多通道无线传输系统具有三大核心优势:一是移动过程中系统可自动切换,通过采用基于4.5G的免授权频谱(5.8GHz频段)的eLTE-U技术,结合了LTE的高性能与Wi-Fi易部署的特点,同时在覆盖能力、高可靠性、移动性及容量等方面均具有显著优势,保证站场范围内数据传输的持续平均速率达200Mbps,相比Wi-Fi技术速率提高了5-6倍,便捷高效,保障工业级稳定可靠的无线连接;二是通过搭建多通道,可在规定时间内,自动传输完成规定业务视频文件的系统;三是通过系统管理界面,可实时监控在传文件的详细信息及整体传输速率,安全可靠。
此方案对轨道交通行业海量数据进行传输、分析和处理,挖掘数据的内部运营价值和外部商业价值。它的应用改进了机车整备传统运维模式,极大地提高了大数据传输的工作效率。未来,采用eLTE-U技术,不仅能满足铁路站场范围内机务大数据的回传,更可以对站场范围内,包括货检、列检、编组站、动车段、客运站等场景的业务数据、视频图像等数据传输,实现多业务统一承载,构建铁路站场综合无线接入平台。目前正在兰州铁路局进行机车6A视频数据自动传输试点工作。
好文章,需要你的鼓励
传统数据工程面临数据质量差、治理不善等挑战,成为AI项目的最大障碍。多智能体AI系统通过协作方式正在彻底改变数据准备、治理和应用模式。Google Cloud基于Gemini大语言模型构建协作生态系统,让不同智能体专门负责数据工程、科学、治理和分析等任务。系统通过分层架构理解组织环境,自主学习历史工作流程,能够预防问题并自动处理重复性任务,大幅提升效率。
中科大团队开发出LongAnimation系统,解决了长动画自动上色中的色彩一致性难题。该系统采用动态全局-局部记忆机制,能够为平均500帧的动画进行稳定上色,性能比现有方法提升35-58%。核心创新包括SketchDiT特征提取器、智能记忆模块和色彩优化机制,可大幅提升动画制作效率。
微软推出Copilot调优功能,让企业通过低代码工具利用自动化微调技术训练企业数据。与基于公开数据的通用AI模型不同,企业需要理解内部数据和流程的专业化模型。Gartner预测专业化GenAI模型市场将在2026年翻倍至25亿美元。这些模型通常基于开源模型构建,部署为小语言模型,提供更好的成本控制和数据安全性,同时更易符合欧盟AI法案要求。
南开大学团队开发出DepthAnything-AC模型,解决了现有AI距离估算系统在恶劣天气和复杂光照条件下性能下降的问题。通过创新的扰动一致性训练框架和空间距离约束机制,该模型仅用54万张图片就实现了在雨雪、雾霾、夜晚等复杂环境下的稳定距离判断,同时保持正常条件下的优秀性能,为自动驾驶和机器人导航等应用提供了重要技术支撑。