随着铁路的高速发展,对于安全性、可靠性提出了更高的要求,列车的安全高效行驶不仅依赖列控系统,更依赖准确、有效的信息获取和风险预警,包括列车及沿线的人员、设备、环境信息。如何将车上的信息稳定、可靠的传递到地面,实现大数据回传,是目前铁路机务系统面临的一个很重要问题。但同时,现有技术手段有限,机务数据目前更多是人工拷贝方式,效率低下;采用传统的WI-FI覆盖方案,存在覆盖能力弱、易受干扰、终端并发数量小,无法漫游切换,数据无法稳定传输等问题。
近日,神州高铁与华为携手,利用神州高铁自主知识产权的国家973项目“智慧协同”专利技术及华为eLTE-U技术,成功研发多通道大数据无线传输系统,实现了机务段范围内车载机务大数据的自动、稳定回传。
该系统是为解决轨道交通领域中用户对机车、车辆车载视频数据自动下载的迫切需求而设计的一种集中式网络通信系统。系统采用先进的数据算法,合理分配网络通道,智慧协同多个无线链路并行对视频数据进行传输,从而实现机车、车辆进入站场时,车载设备自动连接、高速传输、行驶至下一基站时系统自动切换等功能,最大程度地优化了车载大数据传输工作的效率和质量。
相比于传统数据传输依靠人工转储数据效率低下、易受病毒干扰的弊端,神州高铁研发的多通道无线传输系统具有三大核心优势:一是移动过程中系统可自动切换,通过采用基于4.5G的免授权频谱(5.8GHz频段)的eLTE-U技术,结合了LTE的高性能与Wi-Fi易部署的特点,同时在覆盖能力、高可靠性、移动性及容量等方面均具有显著优势,保证站场范围内数据传输的持续平均速率达200Mbps,相比Wi-Fi技术速率提高了5-6倍,便捷高效,保障工业级稳定可靠的无线连接;二是通过搭建多通道,可在规定时间内,自动传输完成规定业务视频文件的系统;三是通过系统管理界面,可实时监控在传文件的详细信息及整体传输速率,安全可靠。
此方案对轨道交通行业海量数据进行传输、分析和处理,挖掘数据的内部运营价值和外部商业价值。它的应用改进了机车整备传统运维模式,极大地提高了大数据传输的工作效率。未来,采用eLTE-U技术,不仅能满足铁路站场范围内机务大数据的回传,更可以对站场范围内,包括货检、列检、编组站、动车段、客运站等场景的业务数据、视频图像等数据传输,实现多业务统一承载,构建铁路站场综合无线接入平台。目前正在兰州铁路局进行机车6A视频数据自动传输试点工作。
好文章,需要你的鼓励
清华大学团队突破性开发"零样本量化"技术,让AI模型在不接触真实数据的情况下完成高效压缩,性能反超传统方法1.7%,为隐私保护时代的AI部署开辟新路径。
普林斯顿大学研究团队开发出"LLM经济学家"框架,首次让AI学会为虚拟社会制定税收政策。系统包含基于真实人口数据的工人AI和规划者AI两层,通过自然语言交互找到最优经济政策,甚至能模拟民主投票。实验显示AI制定的税收方案接近理论最优解,为AI参与社会治理提供了新路径。
K Prize是由Databricks和Perplexity联合创始人推出的AI编程挑战赛,首轮比赛结果显示,获胜者巴西工程师Eduardo Rocha de Andrade仅答对7.5%的题目就获得5万美元奖金。该测试基于GitHub真实问题,采用定时提交系统防止针对性训练,与SWE-Bench 75%的最高得分形成鲜明对比。创始人承诺向首个在该测试中得分超过90%的开源模型提供100万美元奖励。
南开大学研究团队提出了一种新的3D高斯泼溅重光照方法,通过在高斯原语上直接编码离散化SDF值,避免了传统方法需要额外SDF网络的问题。该方法设计了投影一致性损失来约束离散SDF样本,并采用球形初始化避免局部最优。实验表明,新方法在保持高质量重光照效果的同时,仅需现有方法20%的显存,显著提升了训练和渲染效率。