随着铁路的高速发展,对于安全性、可靠性提出了更高的要求,列车的安全高效行驶不仅依赖列控系统,更依赖准确、有效的信息获取和风险预警,包括列车及沿线的人员、设备、环境信息。如何将车上的信息稳定、可靠的传递到地面,实现大数据回传,是目前铁路机务系统面临的一个很重要问题。但同时,现有技术手段有限,机务数据目前更多是人工拷贝方式,效率低下;采用传统的WI-FI覆盖方案,存在覆盖能力弱、易受干扰、终端并发数量小,无法漫游切换,数据无法稳定传输等问题。
近日,神州高铁与华为携手,利用神州高铁自主知识产权的国家973项目“智慧协同”专利技术及华为eLTE-U技术,成功研发多通道大数据无线传输系统,实现了机务段范围内车载机务大数据的自动、稳定回传。
该系统是为解决轨道交通领域中用户对机车、车辆车载视频数据自动下载的迫切需求而设计的一种集中式网络通信系统。系统采用先进的数据算法,合理分配网络通道,智慧协同多个无线链路并行对视频数据进行传输,从而实现机车、车辆进入站场时,车载设备自动连接、高速传输、行驶至下一基站时系统自动切换等功能,最大程度地优化了车载大数据传输工作的效率和质量。
相比于传统数据传输依靠人工转储数据效率低下、易受病毒干扰的弊端,神州高铁研发的多通道无线传输系统具有三大核心优势:一是移动过程中系统可自动切换,通过采用基于4.5G的免授权频谱(5.8GHz频段)的eLTE-U技术,结合了LTE的高性能与Wi-Fi易部署的特点,同时在覆盖能力、高可靠性、移动性及容量等方面均具有显著优势,保证站场范围内数据传输的持续平均速率达200Mbps,相比Wi-Fi技术速率提高了5-6倍,便捷高效,保障工业级稳定可靠的无线连接;二是通过搭建多通道,可在规定时间内,自动传输完成规定业务视频文件的系统;三是通过系统管理界面,可实时监控在传文件的详细信息及整体传输速率,安全可靠。
此方案对轨道交通行业海量数据进行传输、分析和处理,挖掘数据的内部运营价值和外部商业价值。它的应用改进了机车整备传统运维模式,极大地提高了大数据传输的工作效率。未来,采用eLTE-U技术,不仅能满足铁路站场范围内机务大数据的回传,更可以对站场范围内,包括货检、列检、编组站、动车段、客运站等场景的业务数据、视频图像等数据传输,实现多业务统一承载,构建铁路站场综合无线接入平台。目前正在兰州铁路局进行机车6A视频数据自动传输试点工作。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。