医疗行业正借助现代IT技术向医护转变,而这一转变却为人们的生活带来了风险。患者的医疗信息出现在网上之后,数据安全和应用可用性就必不可少。医院和医疗实践正在对X光、CAT扫描、药物分配以及采用交互视频的外科手术等医疗应用进行数字化。此外,医护人员正在通过平板电脑、手机和其它设备实时访问所有医疗信息。
当涉及到医疗IT基础架构时,每一秒的时间都至关重要。此外,由于个人记录中的多数个人身份信息都包含在受保护健康信息(PHI)中,因此数据安全也需慎重考虑。考虑到可能导致死亡的灾难性后果,医疗行业网络必须具备最强的抗干扰能力活力,并且得到很好的保护。
数字转型意味着IT转型
在设计并管理数字化医疗基础架构时,任何医疗行业的IT专业人士都必须解决5个问题。
生命危在旦夕时要分秒必争
当业务真的会影响到人们的生活时,最重要的就是确保服务不受影响。医疗行业的数字转型意味着必须搭建强健且有活力的网络基础架构。对医疗信息传递和安全的任何负面影响都可能对患者隐私和最终康复产生深远的影响。
好文章,需要你的鼓励
检索增强生成(RAG)正成为AI领域的关键技术,通过结合外部信息检索与大语言模型的生成能力,解决传统模型仅依赖训练数据的局限性。RAG允许模型实时访问外部数据库或文档,提供更准确、更新的信息。该技术可应用于企业文档查询、个人化AI助手等场景,通过向模型提供特定领域知识来获得精准结果。微软专家指出,RAG有助于结合知识与推理、提高模型使用效率,并支持多模态应用。
加州大学伯克利分校研究团队开发出革命性的R2R2R系统,仅需智能手机拍摄和一段演示视频,就能自动生成大量机器人训练数据。该系统绕过了传统昂贵的远程操作和复杂物理仿真,通过3D重建和智能轨迹生成技术,让机器人训练效率提升27倍,成本大幅降低,有望让高质量机器人技能变得像安装手机应用一样普及。
AI数据平台iMerit认为企业级AI工具集成的下一步不是更多数据,而是更好的数据。该公司正式推出学者计划,旨在建立专家团队来微调生成式AI模型。与Scale AI的高吞吐量方法不同,iMerit专注于专家主导的高质量数据标注,需要深度人工判断和领域专业监督。公司目前与超过4000名学者合作,客户包括三家大型生成式AI公司、八家顶级自动驾驶公司等。
腾讯优图实验室提出AnoGen方法,仅用3张异常图片就能训练出高精度工业检测AI。该方法通过扩散模型学习异常特征并生成大量逼真样本,在MVTec数据集上将检测精度提升5.8%,为解决工业异常检测中样本稀缺问题提供了突破性方案。